

The OmniDB Handbook

Contents:

	1. Introduction

	2. Installation

	3. Creating Users and Connections

	4. Managing Databases

	5. Creating, Changing and Removing Tables

	6. Managing Table Data

	7. Writing SQL Queries

	8. Visualizing Query Plans

	9. Visualizing Data

	10. Managing other Elements

	11. Additional Features

	12. OmniDB Config Tool

	13. Writing and Debugging PL/pgSQL Functions

	14. Monitoring Dashboard

	15. Logical Replication

	16. pglogical

	17. Postgres-BDR

	18. Postgres-XL

	19. Deploying omnidb-server

	20. Console Tab

	21. Plugin System

	22. Advanced Object Search

	23. Debugger Plugin Installation

	23.1. Linux Installation

	23.2. Windows Installation

	23.3. FreeBSD Installation

	23.4. MacOSX Installation

	23.5. Post-installation steps ** REQUIRED **

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction

OmniDB is an open source browser-based app designed to access and manage
many different Database Management systems, e.g. PostgreSQL, Oracle and MySQL.
OmniDB can run either as an App or via Browser, combining the flexibility needed
for various access paths with a design that puts security first. OmniDB is
actively developed, automatically tested on a variety of databases and browsers
and comes with full documentation.

Since early development, OmniDB was designed as an browser-based app.
Consequently, it runs in any browser, from any operational system. It can be
accessed by several computers and multiple users, each one of them with his/her
own group of connections. It also can be hosted in any operational system,
without the need of install any dependencies. We will see further details on
installation in the next chapters.

OmniDB’s main objective is to offer an unified workspace with all
functionalities needed to manipulate different DMBS. DBMS specific tools aren’t
required: in OmniDB, the context switch between different DBMS is done with a
simple connection switch, without leaving the same page. The end-user’s
sensation is that there is no difference when he/she manipulates different DBMS,
it just feels like different connections.

Despite this, OmniDB is built with simplicity in mind, designed to be a fast and
lightweight browser-based application. OmniDB is also powered by the WebSocket
technology, allowing the user to execute multiple queries and procedures in
multiple databases in multiple hosts in background.

OmniDB is also secure. All OmniDB user data are stored encrypted, and no
database password is stored at all. When the user first connects to a database,
OmniDB asks for the password. This password is encrypted and stored in memory
for a specific amount of time. When this time expires, OmniDB asks the password
again. This ensures maximum security for the database OmniDB is connecting to.

History

OmniDB’s creators, Rafael Thofehrn Castro and William Ivanski, worked in a
company where they needed to deal with several different databases from
customers on a daily basis. These databases were from different DBMS
technologies, and so they needed to keep switching between database management
tools (typically one for each DBMS). As they were not keen of the existing
unified database management tools (that could manage different DBMS), they came
up with OmniDB’s main idea.

OmniDB’s first version was presented as an undergrad final project in the
Computer Science Course from the Federal University of Paraná, in Brazil. The
objective was to trace a common line between popular DBMS, and to study deeply
their metadata. The result was a tool written in ASP.NET/C# capable of
connecting and identifying the main structures (tables, keys, indexes and
constraints), in a generic way, from several DBMS:

	Firebird

	MariaDB / MySQL

	Oracle

	PostgreSQL

	SQLite

	Microsoft SQL Server

OmniDB’s first version also allowed the conversion between all DBMSs supported
by the tool. This feature was developed to be user friendly, requiring just a
few steps: the user needs to select a source connection, the structures that
will be converted (just tables and all their structures, along with their data)
and the target connection.

2. Installation

OmniDB provides 2 kinds of packages to fit every user needs:

	OmniDB Application: Runs a web server on a random port behind, and
provides a simplified web browser window to use OmniDB interface without any
additional setup. Just feels like a desktop application.

	OmniDB Server: Runs a web server on a random port, or a port specified by
the user. User needs to connect to it through a web browser. Provides user
management, ideal to be hosted on a server on users’ networks.

Both application and server can be installed on the same machine.

OmniDB Application

In order to run OmniDB app, you don’t need to install any additional piece of
software. Just head to omnidb.org [https://omnidb.org/] and download the latest package
for your specific operating system and architecture:

	Linux 64 bits

	DEB installer

	RPM installer

	Windows 64 bits

	EXE installer

	Mac OSX

	DMG installer

Use the specific installer for your Operational System and it will be available
through your desktop environment application menu or via command line with
omnidb-app.

[image: ../_images/image_001.png]

OmniDB Server

Like OmniDB app, OmniDB server doesn’t require any additional piece of software
and the same options for operating system and architecture are provided.

Use the specific installer for your Operational System and it will be available
through command line with omnidb-server:

user@machine:~$ omnidb-server
Starting OmniDB websocket...
Checking port availability...
Starting websocket server at port 25482.
Starting OmniDB server...
Checking port availability...
Starting server OmniDB 2.4.0 at 0.0.0.0:8000.
Starting migration of user database from version 0.0.0 to version 2.4.0
OmniDB successfully migrated user database from version 0.0.0 to version 2.4.0
Press Ctrl+C to exit

Note how OmniDB starts a websocket server in port 25482 and a web server in
port 8000. You can also specify both ports and listening address:

user@machine:~$ omnidb-server -p 8080 -w 25000 -H 127.0.0.1
Starting OmniDB websocket...
Checking port availability...
Starting websocket server at port 25000.
Starting OmniDB server...
Checking port availability...
Starting server OmniDB 2.4.0 at 0.0.0.0:8080.
Starting migration of user database from version 0.0.0 to version 2.4.0
OmniDB successfully migrated user database from version 0.0.0 to version 2.4.0
Press Ctrl+C to exit

OmniDB with Oracle

OmniDB app and server does not require any piece of additional software, as
explained above. But if you are going to connect to an Oracle database, then
you need to download and install Oracle Instant Client (or extract it to a
specific folder, depending on the operating system you use):

	MacOSX: Download Oracle Instant Client
(64-bit [http://www.oracle.com/technetwork/topics/intel-macsoft-096467.html])
and extract in ~/lib;

	Linux: Download Oracle Instant Client
(32-bit [http://www.oracle.com/technetwork/topics/linuxsoft-082809.html])
(64-bit [http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html])
and install it on your system, then set LD_LIBRARY_PATH;

	Windows: Download Oracle Instant Client
(32-bit [http://www.oracle.com/technetwork/topics/winsoft-085727.html])
(64-bit [http://www.oracle.com/technetwork/topics/winx64soft-089540.html]) and
extract it into OmniDB’s folder.

Note for Windows users using OmniDB app: For OmniDB 2.8 and above, you will
need to extract Oracle Instant Client libraries inside of folder
OMNIDBAPPINSTALLFOLDER\resources\app\omnidb-server.

OmniDB User Database

Since version 2.4.0, upon initialization both server and app will create a file
~/.omnidb/omnidb-app/omnidb.db (for OmniDB app) or
~/.omnidb/omnidb-server/omnidb.db (for OmniDB server) in the user home
directory, if it does not exist. That can be confirmed by the message OmniDB
successfully migrated user database from version 0.0.0 to version 2.4.0 you saw
above. This file is also called user database and contains user data. If it
already exists, then OmniDB will check whether the version of the server matches
the version of the user database:

user@machine:~$ omnidb-server
Starting OmniDB websocket...
Checking port availability...
Starting websocket server at port 25482.
Starting OmniDB server...
Checking port availability...
Starting server OmniDB 2.4.0 at 0.0.0.0:8000.
User database version 2.4.0 is already matching server version.
Press Ctrl+C to exit

Future releases of OmniDB will contain the user database migration SQL
commands required to upgrade the user database, if necessary. This way user
data is not lost by upgrading OmniDB. Imagine the following scenario: you use
OmniDB 2.4.0 now and you decide to upgrade it to newest release 2.5.0, for
example. After the upgrade, when you start OmniDB server, it will apply the
changes version 2.5.0 requires. So you will see something like that:

user@machine:~$ omnidb-server
Starting OmniDB websocket...
Checking port availability...
Starting websocket server at port 25482.
Starting OmniDB server...
Checking port availability...
Starting server OmniDB 2.5.0 at 0.0.0.0:8000.
Starting migration of user database from version 2.4.0 to version 2.5.0
OmniDB successfully migrated user database from version 2.4.0 to version 2.5.0
Press Ctrl+C to exit

OmniDB configuration file

Starting on version 2.1.0, OmniDB server comes with a configuration file
omnidb.conf that enables the user to specify parameters such as port and
listening address. Also, 2.1.0 enables us to start the server with SSL, this
requires a certificate and is configured in the same configuration file. For
more details about how to deploy the OmniDB server, please read Chapter 19.

Starting on version 2.4.0, this file is located in
~/.omnidb/omnidb-server/omnidb.conf in the user home directory.

OmniDB in the browser

Now that the web server is running, you may access OmniDB browser-based app on
your favorite browser. Type in address bar: localhost:8000 and hit Enter. If
everything went fine, you shall see a page like this:

[image: ../_images/image_002.png]

Now you know that OmniDB is running correctly. In the next chapters, we will see
how to login for the first time, how to create an user and to utilize OmniDB.

3. Creating Users and Connections

Logging in as user admin

OmniDB comes only with the user admin. If you are using the server version,
the first thing to do is sign in as admin, the default password is admin.
You don’t need to login in the app version.

[image: ../_images/image_003.png]

The next window is the initial window.

[image: ../_images/image_004.png]

Creating another user

Click on the Users icon on the upper right corner. It will open a popup
that allows the current OmniDB super user to create a new OmniDB user.

[image: ../_images/image_005.png]

After clicking on the Users icon the tool inserts a new user called user2
(if that is the first user after admin).

[image: ../_images/image_006.png]

You will have to change the username and password. Check if you want this
new user to be a super user. This user management window is only seem by super
users. When you are done, click on the Save Data button inside the popup.

[image: ../_images/image_007.png]

You can create as many users as you want, edit existing users and also delete
users by clicking on the red cross at the actions column. Now you can logout by
clicking in the Sign Out button in the top right corner.

Signing in as the new user

Let us sign in as the user we just created.

[image: ../_images/image_008.png]

And we can see the window again. Note that now there is no Users icon, because
the test user is not a super user. Go ahead and click on Connections on
the upper left corner. You will see a popup like this:

[image: ../_images/image_009.png]

Creating connections

At the moment, OmniDB supports PostgreSQL, Oracle, MySQL and MariaDB. More DBMS
support is being added as you read this.

We will now create one connection to a PostgreSQL database, one connection to an
Oracle database and one connection to a MariaDB database. To create the
connections you have to click on the button New Connection and then choose the
connection and fill the other fields. After filling all the fields for both
connections, click on the Save Data button.

[image: ../_images/image_010.png]

For each connection there is an Actions column where you can delete, test and
select them. Go ahead and test the PostgreSQL connection.

[image: ../_images/image_011.png]

Notice a pop-up appears with the message fe_sendauth: no password supplied.
This is happening because OmniDB does not store the database user password on
disk. Not having any password at hand, OmniDB will try to connect without one,
thus trying to take advantage of automatic authentication methods that might be
in place: trust method, .pgpass file, and so on. As the database server
replies with an error not allowing the user to connect, then OmniDB understands
a password is required and asks it to the user. When the user types a password
in this popup, the password is encrypted and stored in memory.

After you type the password and hit Enter, if the connection to the database
is successful you will see a confirmation pop-up.

[image: ../_images/image_012.png]

But, if you have trouble of any kind connecting to your PostgreSQL database,
the same popup will remain showing the error OmniDB got.

[image: ../_images/image_013.png]

For Oracle, the behavior is similar. When OmniDB first tries to connect to an
Oracle database without a password, you will see a message like this:

[image: ../_images/image_115.png]

If you have any trouble connection to your Oracle database, the same popup will
remain showing the error OmniDB got:

[image: ../_images/image_116.png]

MariaDB and MySQL databases also works in the same way. First time, no password
was given:

[image: ../_images/image_184.png]

But if you have any problems, such as database server down:

[image: ../_images/image_185.png]

Finally, in the connections grid, if you click on the Select Connection
action, OmniDB will open it in a new Connection Outer Tab as we can see in
the next chapter.

Using SSH tunnels

Starting from 2.8, OmniDB allows the user to connect to any remote database
through SSH tunnels. The user needs to fill SSH tunnel information in each
connection in the Connections Grid.

[image: ../_images/image_186.png]

	SSH Server: The server you are connecting to via SSH;

	SSH Port: The port of the SSH server (default is 22, but it can be any port
number);

	SSH User: The operating system user name you use to connect to the SSH
server;

	SSH Password: The password of the operating system user. If you fill the
field SSH Key, then this is optional;

	SSH Key: The contents of the local private SSH key you can use to connect to
the SSH server. If you fill this field, then you can also fill the field SSH
Password, but in this case it will be the password for the SSH private key.

Please note that all information is stored encrypted in your local OmniDB User
Database.

While using SSH tunnels, you also need to fill all database fields accordingly.
But instead of being relative to the OmniDB server, they will be relative to the
SSH Server. This can be done in 2 scenarios as explained below.

If the database is inside the same server as you are connecting to via SSH, then
you will have a situation like this:

[image: ../_images/ssh_tunnels_1.png]

In this scenario, the database Server will be 127.0.0.1, as the database is
in the same machine as the SSH Server.

But the database can be outside the SSH server, like this:

[image: ../_images/ssh_tunnels_2.png]

Here the database Server needs to be 192.168.0.10, as it is the relative
address for the SSH server to connect to the database server.

4. Managing Databases

After creating a connection you can select it by clicking in the Select
Connection action in the connections grid. You will see that the connection
will be represented by a kind of outer tab called a Connection Tab. And this
whole area is called the Workspace Window.

[image: ../_images/image_014.png]

Sections of the Workspace window

This interface has several elements:

[image: ../_images/image_015.png]

	1) Connections: Opens a popup with the Connections grid

	2) Outer Tabs: OmniDB lets you work with several databases at the same
time. Each database will be accessible through an outer tab. Outer tabs also
can host miscellaneous connection-independent features, like the Snippets
feature

	3) Options: Shows the current user logged in, and if user is a superuser,
also shows a link for user management. Also shows links for user settings,
installed plugins, query history, information and logout.

Connection Outer Tab

The outer table named PostgreSQL - testdb has this name because of the alias
(PostgreSQL) we put in the connection to the testdb database. This tab is a
Connection Outer Tab. Notice the little tab with a cross besides the
PostgreSQL - testdb outer tab. This allows you to create a new outer tab that
will automatically be a Connection Outer Tab. However, the Snippet Outer Tab
is fixed and will always be the first.

A new Connection Outer Tab will always automatically point to the first
connection on your list of database connections. Or, if you clicked on the
Select Connection action, it will point to the selected connection. Observe
the elements inside of this tab:

[image: ../_images/image_016.png]

	1) Connection Selector: Shows all connections and lets the user select the
current one

	2) Tree of Structures: Displays a hierarchical tree where you can navigate
through the database elements

	3) Properties and DDL Panels: Display Properties and DDL about the
currently selected node in the tree view

	4) Inner Tabs: Allows the user to execute actions in the current database.
There are several kinds of inner tabs for the current database. By clicking on
the last small tab with a cross, you can add a new tab. A new tab can be a
Query Tab, Console Tab, Monitoring Dashboard or Backends

[image: ../_images/image_187.png]

	5) Inner Tab Content: Can vary depending on the kind of inner tab. The
figure shows a Query Tab and in this case the content will be an SQL Editor,
with syntax highlight, autocomplete and find & replace

	6) Inner Tab Actions: Can vary depending on the kind of inner tab. For a
Query Tab, they are Run, Indent SQL, Command History, Explain,
Explain Analyze, Autocommit and Export to File

	7) Inner Tab Results: A Query Tab, after you click in the Execute
Button or type the run shortcut (Alt-Q), will show a grid with the query
results in the Data subtab. If the query calls a function that raises
messages, those will be shown in the Messages subtab. If instead of Run you
clicked in Explain or Explain Analyze, the explain plan for the query will
be shown in the Explain subtab.

Working with databases

Take a look at your connections selector. OmniDB always points to the first
available connection but you can change it by clicking on the selector.

[image: ../_images/image_017.png]

Select the PostgreSQL connection. Now go to the tree right below the selector
and click to expand the root node PostgreSQL.

[image: ../_images/image_018.png]

Bear in mind that every 30 minutes you keep without performing actions on the
database, will trigger an Authentication popup, meaning that the password that
OmniDB has encrypted and stored in memory is now expired. As explained before,
this is important for your database security. After you type the correct
password, you will see the PostgreSQL node now shows the PostgreSQL version and
also was expanded, showing the current database connection and also instance
wide elements: Databases, Tablespaces, Roles and Replication Slots.

You can connect to a single PostgreSQL database, and using the same connection
you can connect to other databases in the same PostgreSQL instance. The
currently active database will be indicated below the connection selector.

[image: ../_images/image_188.png]

To connect to a different database, expand the node corresponding to that
database. A popup will appear asking if you really want to change the active
database.

[image: ../_images/image_189.png]

Click on Yes and OmniDB will change the active database to the database you
choose. It will be reflected on the Active database indicator, and also on
the outer tab name.

[image: ../_images/image_190.png]

Go ahead and expand the Schemas node. You will see all schemas in the current
database (in case of PostgreSQL, TOAST and temp schemas are not shown).

[image: ../_images/image_019.png]

Now click to expand the schema public. You will see different kinds of
elements contained in this schema.

[image: ../_images/image_020.png]

Now click to expand the node Tables, and you will see all tables contained in
the schema public. Expand any table and you will see its columns, primary key,
foreign keys, constraints, indexes, rules, triggers and partitions.

[image: ../_images/image_021.png]

In order to view records inside a table, right click it and choose *Data Actions

Query Data*.

[image: ../_images/image_022.png]

Notice that OmniDB opens a new SQL editor with a simple query to list table
records. The records are displayed in a grid right below the editor. This grid
can be controlled with keyboard as if you were using a spreadsheet manager. You
can also copy data from single cells or block of cells (that can be selected
with the keyboard or mouse) and paste on any spreadsheet manager.

[image: ../_images/image_023.png]

You can edit the query on the SQL editor, writing simple or more complex
queries. To execute, click on the action button or hit the keystroke Alt-Q.
If the results exceed 50 registers, then extra buttons Fetch More and Fetch
All will appear. More details in the next chapters.

Working with multiple tabs inside the same connection

Inside a single connection, you can create several inner query tabs by clicking
on the last little tab with a cross, and then choosing Query Tab.

[image: ../_images/image_024.png]

On OmniDB, you can execute several SQL statements and procedures in parallel.
When it is executing, an icon will be shown in the tab to indicate its current
state. If some process is finished and it is not in the current tab, that tab
will show a green icon indicating the routine being executed there is now
finished.

[image: ../_images/image_025.png]

By clicking in the Cancel button, you can cancel a process running inside the
database.

[image: ../_images/image_026.png]

You can also drag and drop a tab to change its order. This works with both inner
and outer tabs.

[image: ../_images/image_027.png]

Additionally, you can use keyboard shortcuts to manage inner tabs (SQL Query)
and outer tabs (Connection):

	Ctrl-Insert: Insert a new inner tab

	Ctrl-Delete: Removes an inner tab

	Ctrl-<: Change focus to inner tab at left

	Ctrl->: Change focus to inner tab at right

	Ctrl-Shift-Insert: Insert a new outer tab

	Ctrl-Shift-Delete: Removes an outer tab

	Ctrl-Shift-<: Change focus to outer tab at left

	Ctrl-Shift->: Change focus to outer tab at right

Starting from OmniDB version 2.3.0, all SQL Query tabs are automatically saved
whenever you execute them. Even if you close OmniDB window or browser tab, they
are already stored in OmniDB User Database. They will be automatically
restored when you open OmniDB again (if you are using app), open it in another
browser window (if you are using server), or even if you clicked in the
Connections window or logged out. Removing an outer tab or inner tab by the
interface makes it permanently deleted, so it will not be restored.

5. Creating, Changing and Removing Tables

Creating tables

OmniDB has a table creation interface that lets you configure columns,
constraints and indexes. A couple of observations should be mentioned:

	Most DBMS automatically create indexes when primary keys and unique
constraints are created. Because of that, the indexes tab is only available
after creating the table.

	Each DBMS has its unique characteristics and limitations regarding table
creation and the OmniDB interface reflects these limitations. For instance,
SQLite does not allow us to change existing columns and constraints. Because of
that, the interface lets us change only table name and add new columns when
dealing with SQLite databases (it is still not the case in OmniDB Python
version, as it currently supports only PostgreSQL databases).

We will create example tables (customers and addresses) in the testdb
database we connected to earlier. Right click on the Tables node and select
the Create Table (GUI) action:

[image: ../_images/image_028.png]

We will create the table customers with a primary key that will be referenced
by the table addresses:

[image: ../_images/image_029.png]

[image: ../_images/image_030.png]

Click on the Save Changes button. Right-click the Tables tree node and click
Refresh. Note how the table appers in the Tables tree node:

[image: ../_images/image_031.png]

By keeping the table customers selected in the treeview, check its properties
and DDL:

[image: ../_images/image_191.png]

[image: ../_images/image_192.png]

Now create the table addresses with a primary key and a foreign key:

[image: ../_images/image_032.png]

[image: ../_images/image_033.png]

Don’t forget to click on the Save Changes button when done. At this point we
have two tables in schema public. The schema structure can be seen with the
graph feature by right clicking on the schema public node of the tree and
selecting Render Graph > Simple Graph:

[image: ../_images/image_034.png]

[image: ../_images/image_035.png]

And this is what the Complete Graph looks like:

[image: ../_images/image_036.png]

Editing tables

OmniDB also lets you edit existing tables (always following DBMS limitations).
To test this feature we will add a new column to the table customers. To
access the alter table interface just right click the table node and select the
action Table Actions > Alter Table:

[image: ../_images/image_037.png]

Add the column cust_age and save:

[image: ../_images/image_038.png]

The interface is capable of detecting errors that may occur during alter table
operations, showing the command and the error that occurred. To demonstrate it
we will try to add the column cust_name, which already belongs to this table:

[image: ../_images/image_039.png]

Removing tables

In order to remove a table just right click the table node and select the action
Table Actions > Drop Table:

[image: ../_images/image_040.png]

6. Managing Table Data

The tool allows us to edit records contained in tables through a very simple and
intuitive interface. Given that only a few DBMS have unique identifiers for
table records, we opted to allow data editing and removal only for tables that
have a primary key. Tables that do not have it can only receive new records.

To access the record editing interface, right click the table node and select
the action Data Actions > Edit Data:

[image: ../_images/image_041.png]

[image: ../_images/image_042.png]

The interface has a SQL editor where you can filter and order records. To
prevent that the interface requests too many records, there is a field that
limits the number of records to be displayed. The records grid has column names
and data types. Columns that belong to the primary key have a key icon next to
their names.

The row of the grid that have the symbol + is the row to add new records. Let
us insert some records in the table customers:

[image: ../_images/image_043.png]

After saving, the records will be inserted and can be edited (only because this
table has a primary key). Let’s change the cust_name of some of the existing
records and, at the same time, let’s remove one of the rows:

[image: ../_images/image_044.png]

Tables can have fields with values represented by very long strings. To help
edit these fields, OmniDB has an interface that can be accessed by right
clicking the specific cell:

[image: ../_images/image_045.png]

[image: ../_images/image_046.png]

The interface detects errors that may occur during operations related to
records. To demonstrate, let us insert two records with existing cust_id
(primary key):

[image: ../_images/image_047.png]

It shows which commands tried to be executed and the respective errors.

To complete this chapter, let’s add some records to the Address table:

[image: ../_images/image_048.png]

7. Writing SQL Queries

The most common kind of inner tab is the Query Tab, containing the following
elements:

[image: ../_images/image_049.png]

	1) Tab Header: You can see the name of the tab and an icon to close it. If
there is a query running in the tab, you will see an indicator. If the tab
finishes running and you are working on a different tab, a green indicator you
be shown. By double-clicking on the tab name, you will be able to rename the
tab.

	2) Add Tab: You can quickly add another inner tab by clicking on the plus
icon.

	3) SQL Editor: Full-featured SQL editor with SQL syntax highlighting,
Find & Replace (Ctrl-F and Ctrl-H) and an autocomplete component, explained
below.

	4) Execute: The text contained in the SQL Editor will be executed against
the current active database when you click on this button (or hit the shortcut
, Alt-Q by default). If there is some selected text in the SQL Editor, it will
execute only the selected text. Once the command is running, a red Cancel
button will be shown, allowing you to cancel the execution (or using the
shortcut, Alt-C by default).

	5) Indent SQL: This button will prettify any SQL code written in the SQL
editor (shortcut Alt-D by default).

	6) Query History: All commands executed against the current database are
stored in the Query History, which can be accessed by clicking on this button.
You also will be able to filter by date and text to find a SQL command you need.

	7) Explain (PostgreSQL only): Call your SQL query against PostgreSQL by
putting EXPLAIN in front of it. The results will be shown in a textual and
graphical form in the Explain tab (please see Chapter 8 for more details).

	8) Explain Analyze (PostgreSQL only): Same as Explain button, but call
the SQL query with EXPLAIN ANALYZE, which will effectively execute the query.

	9) Autocommit (PostgreSQL only): When enabled, every query executed will
be commited to the database. When disabled, OmniDB starts a transaction and upon
execution of a query, the interface will show buttons allowing the user to
Commit or Rollback. The user can also keep the transaction open and execute
other commands.

	10) Backend Status (PostgreSQL only): When you open a new Query Tab, the
status is “Not Connected”, because OmniDB didn’t start a PostgreSQL backend yet.
When you execute the first query, OmniDB starts a new backend and keep it linked
to the Query Tab (each Query Tab will be assigned its own backend). The status
of the backend (idle, active, idle in transaction, etc) will be shown in
this field. When you close the Query Tab, OmniDB terminates the backend.

	11) Export File Type: Can be either CSV or XLSX.

	12) Export To File: By clicking on this button, OmniDB executes the
current query and saves it to a file in OmniDB’s temp folder. After the file is
saved, the interface allows the user to download it.

	13) Data Results: If the query is a SELECT, then it will show a grid
with the results. If the query is a DML or DDL, it will show the message
returned by the RDBMS.

	14) Messages (PostgreSQL only): Any messages (such as the ones given by
the command RAISE NOTICE) will be shown here.

	15) Explain View (PostgreSQL only): Shows a full-featured component to
view the PostgreSQL execution plan in textual or graphical form.

Once executed, the tabs are also saved in OmniDB user database (title and
contents), so the next time you open OmniDB, you will see them all open. Also,
every command you execute in a Query Tab is saved to your Query History and to
the omnidb.log file too.

SQL Autocomplete

The SQL editor has a feature that helps a lot when creating new queries: SQL
code completion. With this feature it is possible to autocomplete columns
contained in a table referenced by an alias. To open the autocomplete interface
you just have to type the alias, the character . and then hit Ctrl-Space:

[image: ../_images/image_050.png]

If the user does not start the autocomplete with the cursor close to a table
alias, the component will show multiple categories of data. By typing in the
filter textbox, elements in all categories will be filtered:

[image: ../_images/image_051.png]

The autocomplete component is also able to identify some contextual information.
For example, if you type a name of a schema, then type the character ., then
hit Ctrl-Space, you will be able to filter among objects contained only in
that schema:

[image: ../_images/image_052.png]

Please note that for RDBMS other than PostgreSQL, the autocomplete component
only works for table columns.

8. Visualizing Query Plans

OmniDB 2.2.0 introduced a very useful feature: graphical query plan
visualization. This may come in handy when writing or optimizing queries, since
it allows you to easily identify performance bottlenecks in your SQL query.

For this feature, SQL Query inner tab shows 2 buttons: Explain and Explain
Analyze.

Textual visualization

When you click the Explain button, OmniDB will execute an EXPLAIN command in
your query. Initial visualization is textual and will show exactly the output
of the EXPLAIN command, but with colored bars representing the estimated cost.
The higher the cost, the darker and wider the bar.

[image: ../_images/image_054.png]

When you click the Explain Analyze button, OmniDB will execute an EXPLAIN ANALYZE command in your query. Beware that this command will really execute the
query. Also, the textual visualization will show much more information, and the
costs are not estimated as in those provided by the EXPLAIN command; they are
real costs.

[image: ../_images/image_055.png]

Tree visualization

Both Explain and Explain Analyze modes also can graphically represent the
textual output into a tree diagram. Each circle represent a node executed by
the query plan, and the larger the circle, the higher the cost.

[image: ../_images/image_056.png]

When queries become more and more complex, also its query plan can be very
complex. With such queries (like the check bloat query we executed below) the
tree visualization can be very interesting:

[image: ../_images/image_057.png]

The query plan visualization component allows you to easily switch between
textual and 2 tree visualizations, which can be zoomed in and out.

9. Visualizing Data

This feature displays a graph with nodes representing tables and edges
representing table relationships with foreign keys. Using the mouse, the user is
able to zoom in, zoom out, and drag and drop nodes to change its position.

There are two types of graphs: Simple Graph and Complete Graph.

Simple graph

This one display simple table nodes and their relationships. To access it just
right click the schema node you want in the tree and then select the action
Render Graph > Simple Graph:

[image: ../_images/image_058.png]

[image: ../_images/image_059.png]

Complete graph

This graph displays tables with all its columns and respective data types.
To access it just right click the schema you want in the tree and then select
the action Render Graph > Complete Graph:

[image: ../_images/image_060.png]

[image: ../_images/image_061.png]

10. Managing other Elements

All PostgreSQL structures are possible to be managed with the use of
SQL templates. This gives the user more power than using graphical forms to
manipulate structures.

For example, let’s consider the sequences inside the schema public of the
database ds2. To create a new sequence, right click on the Sequences
node, and choose Create Sequence.

[image: ../_images/image_062.png]

[image: ../_images/image_063.png]

After you change the name of the sequence, you can uncomment other command
options and set them accordingly to your needs. When the entire command looks
fine, just execute it and the new sequence will be created:

[image: ../_images/image_064.png]

With right click on an existing sequence, you can alter or drop it. It will work
the same way as the creation, by using a SQL template for the user to change.

[image: ../_images/image_065.png]

[image: ../_images/image_066.png]

[image: ../_images/image_067.png]

11. Additional Features

User Settings

Also in the upper right corner, by clicking in the gear-like icon, OmniDB will
open the User Settings pop-up. It is composed by three tabs:

	Shortcuts: Allows the user to change its shortcuts in OmniDB.

[image: ../_images/image_068.png]

	User Options: Allows the user to change the font size of the SQL Editor,
change the entire OmniDB theme and configurate CSV related options. There are a
lot of OmniDB themes, each of them also change the syntax highlight color of the
editor. They are also categorized in light and dark themes. A light theme is the
default; a dark theme will change the entire interface of OmniDB.

[image: ../_images/image_069.png]

	Password: Allows the user to change its password.

Contextual Help

Most of tree nodes (generally grouping ones like Schemas or Tables) offer
contextual help. This feature can be accessed by right-clicking the tree node.
When you click in the Doc: … option, OmniDB will open an inner tab showing
a web browser pointing to the specific page in the online PostgreSQL
Documentation. Also, it will redirect to the specific page considering the
PostgreSQL version you are connected to.

[image: ../_images/image_071.png]

Snippets

Workspace Window has a fixed outer tab with an useful feature called
Snippets. With this feature you can store queries, command instructions and
any other kinds of text you want. You can also structure the snippets in a
directory tree the way you want. All directories and snippets you create are
stored inside of omnidb.db user database and persist when you upgrade OmniDB.

[image: ../_images/image_127.png]

Backend Management

By right-clicking in the tree root node, then moving mouse pointer to
Monitoring and then clicking on Backends, the user can see all activities
going on in the database. Some information are hidden for normal users, only
database superusers are allowed to see.

[image: ../_images/image_174.png]

By clicking in the X in the Actions column, you can terminate the
backend. A confirmation popup will appear.

[image: ../_images/image_175.png]

Properties and DDL

By clicking on most of objects in the tree view (tables, sequences, views,
roles, databases, etc), the user will be able to see a very comprehensive list
of properties of the object.

[image: ../_images/image_176.png]

In the other panel called DDL, the user will be able to see the SQL DDL source
code that can be used to re-create the object. The user can copy this text and
paste it wherever he/she wants.

[image: ../_images/image_177.png]

Export Data

The Query Tab provides a way to save data from query results into a CSV or
XLSX file. Once you click the Export Data button, a cancellable backend starts
to save data into the file. Once it is done, OmniDB provides a link called
Save, so the user can download the file.

[image: ../_images/image_178.png]

All files are stored in a temporary folder inside OmniDB folder. OmniDB
regularly cleans this folder, keeping only files newer than 24 hours.

Query History

From the Query Tab you can click on the Command History button to see a
full, browsable and searchable query tab.

[image: ../_images/image_203.png]

SSH Console

OmniDB also provides a full-featured SSH Console.

[image: ../_images/image_204.png]

12. OmniDB Config Tool

Every installation of OmniDB also comes with a small CLI utility called OmniDB
Config. It will have a different file name, depending on the way you installed
OmniDB:

	If you are using a tarball or zip package, it is called omnidb-config, for
both server and app versions;

	If you used an installer (like the .deb file) of server version, it is called
omnidb-config-server;

	If you used an installer of app version, it is called omnidb-config-app.

Despite having different names, the utility does exactly the same. If you used
an installer, it will be put in your $PATH.

user@machine:~$ omnidb-config-app --help
Usage: omnidb-config-app [options]

Options:
 --version show program\'s version number and exit
 -h, --help show this help message and exit
 -d HOMEDIR, --homedir=HOMEDIR
 home directory containing local databases config and
 log files
 -c username password, --createsuperuser=username password
 create super user: -c username password
 -a, --vacuum databases maintenance
 -r, --resetdatabase reset user and session databases
 -t, --deletetemp delete temporary files

Set home directory

Option -d allows you to set the path to the OmniDB folder that contains the
config and database files where you want to execute other options, like creating
a new super user (-c).

Create super user

Option -c allows you to create a new super user, without needing to open
OmniDB interface.

user@machine:~$ omnidb-config-app -c william password
Creating superuser...
Superuser created.

Vacuum

OmniDB has two databases:

	omnidb.db: Stores all users and connections, and other OmniDB related stuff;

	Sessions database: Stores Django user sessions.

Both databases are SQLite, so it can be useful to vacuum them sometimes to
reduce file size. This can be done with the -a option.

user@machine:~$ omnidb-config-app -a
Vacuuming OmniDB database...
Done.
Vacuuming Sessions database...
Done.

Reset database

If you wish to wipe out all OmniDB information and get a clean database as it
was just installed, you can use the -r option. Use it with caution!

user@machine:~$ omnidb-config-app -r
*** ATENTION *** ALL USERS DATA WILL BE LOST
Would you like to continue? (y/n) y
Cleaning users...
Done.
Cleaning sessions...
Vacuuming OmniDB database...
Done.
Vacuuming Sessions database...
Done.

Delete temporary files

If you desire to remove temporary files that OmniDB creates along its execution,
like exported queries in CSV/XLSX format, you can use the -t option.

user@machine:~$ omnidb-config-app -t
Cleaning temp folder...
Done.

13. Writing and Debugging PL/pgSQL Functions

Introduction

PostgreSQL is more than a RDBMS engine. It is a developing platform. It provides
a very powerful and flexible programming language called PL/pgSQL. Using this
language you can write your own user-defined functions to achieve abstraction
levels and procedural calculations that would be difficult to achieve with plain
SQL (and sometimes impossible to achieve without context-switching with the
application). While you always could develop and manage your own functions
within OmniDB, it is a recent feature that allows you to also debug your own
functions.

OmniDB 2.3.0 introduced this great feature: a debugger for PL/pgSQL functions.
It was implemented by scratch and takes advantage of hooks, an extensibility in
PostgreSQL’s source code that allows us to perform custom actions when specific
events are triggered in the database. For the debugger we use hooks that are
triggered when PL/pgSQL functions are called, and each statement is executed.

This requires the user to install a binary library called omnidb_plugin and
enable it in PostgreSQL’s config file. The debugger also uses a special schema
with special tables to control the whole debugging process. This can be manually
created or with an extension.

For more details on the installation, please refer to the
instructions [https://github.com/OmniDB/OmniDB/blob/master/omnidb_plugin/README],
also available in Chapter 23. Also please read the notes in this document, to be
aware that currently there are some limitations.

After successfully installing the debugger, you will see a schema called omnidb
in your database. Also, if you compiled the debugger yourself, you can install
it as a PostgreSQL extension, and in this case it will appear under the
Extensions tree node.

[image: ../_images/image_072.png]

Writing functions

In the public schema, right-click the Functions node and click on Create
Function. It will open a SQL Query inner tab, already containing a SQL
Template to help you create your first PL/pgSQL function.

[image: ../_images/image_073.png]

[image: ../_images/image_074.png]

You can refer to PostgreSQL documentation on how to write user-defined
functions. No need to open a new browser tab: just right-click the Functions
node and click on Doc: Functions to view the documentation inside OmniDB.

For now, let us replace this SQL template entirely for the source code below:

CREATE OR REPLACE FUNCTION public.fnc_count_vowels (p_input text)
RETURNS integer LANGUAGE plpgsql AS
$function$
DECLARE
 str text;
 ret integer;
 i integer;
 len integer;
 tmp text;
BEGIN
 str := upper(p_input);
 ret := 0;
 i := 1;
 len := length(p_input);
 WHILE i <= len LOOP
 IF substr(str, i, 1) in ('A', 'E', 'I', 'O', 'U') THEN
 SELECT pg_sleep(1) INTO tmp;
 ret := ret + 1;
 END IF;
 i := i + 1;
 END LOOP;
 RETURN ret;
END;
$function$

This will create a function called fnc_count_vowels inside the schema
public. This function takes a text argument called p_input and counts how
many vowels there are in this string. Then returns this count.

To create the function, execute the command in the SQL Query inner tab. If
successful, the function will appear under the Functions tree node (you can
refresh it by right-clicking and then clicking in Refresh). By expanding the
function node as well, you can see its return type and its argument.

[image: ../_images/image_075.png]

Now let us execute this new function for the first time. Open a simple SQL Query
inner tab and execute the following SQL query:

SELECT public.fnc_count_vowels('The quick brown fox jumps over the lazy dog.')

[image: ../_images/image_076.png]

Note how the query returns a single value, containing the number of vowels in
the text. Note also how the query took several seconds to finish; this is caused
by the pg_sleep we put in the source code of the function fnc_count_vowels.

By right-clicking the function node, you can see there are actions to edit,
select and drop it. As you probably guessed, each action will open SQL Query
inner tabs with handy SQL templates in them. But the most interesting action
right now is Debug Function. Go ahead and click it!

[image: ../_images/image_077.png]

Debugging functions

The debugger is a specific inner tab composed of a SQL editor that will show the
process step by step on top of the function source code, and 5 tabs to manage
and view different parts of the debugger.

[image: ../_images/image_078.png]

	Parameters: Before the debugging process starts, the user must provide all
the parameters in this tab. Parameters must be provided exactly the same way you
would provide them if you were executing the function in plain SQL, quoting
strings for instance;

	Variables: This grid displays the current value of each variable that
exists in the current execution context, it will be updated with every step;

	Result: When the function ends, this tab will show the result of the
function call. It could be empty, a single value or even a set of rows;

	Messages: Messages returned explicitly by RAISE commands or even
automatic messages from PostgreSQL will be presented in this tab;

	Statistics: At the end of the debugging process, a chart depicting
execution times for each line in the function body will be presented in this
tab. Additionally, the SQL editor will be updated with a set of colors
representing a heat map, from blue to red, according to the max duration of each
line.

Now let us start debugging this function. First thing to do is to fill every
parameter in the Parameters tab:

[image: ../_images/image_079.png]

Then click on the Start button. Note how OmniDB automatically goes to the
Variables tab, which is the interesting tab now that the function is being
debugged. The argument p_input is now called $1, indicating the first
argument of the function. Also note the variable found, which is a PostgreSQL
reserved variable that indicates whether or not a query has returned values
inside of the function.

Also note that OmniDB points to the first line of the source code of the
function, highlighting it in green. This is the line that is about to be
executed.

[image: ../_images/image_080.png]

Now click in the first button below the SQL editor. It is the Step Over
button, and it means that OmniDB will execute the next statement and stop right
after it.

[image: ../_images/image_081.png]

Note how the variable str has the value assigned to it during execution of
line 9. Right now OmniDB is about to execute line 10, showing the current
execution state.

Now that you know how to step over, let us speed up things a little bit. Click
on the header of the line 20, the last line of code. By doing this, you just
placed a breakpoint. The debugger interface allows you to place one breakpoint
at a time.

[image: ../_images/image_082.png]

After setting a breakpoint, you can click in the second button, Resume. OmniDB
will carry on with the debugging process until it reaches the line of code with
the breakpoint. This may take a while because of the pg_sleep commands we put
in the source code. Note that if you click this button without previously
setting a breakpoint, OmniDB will execute the entire function to the end.

[image: ../_images/image_083.png]

Observe the values for each variable. We can see that the value of ret is 11
even before the function finishes. Also note that OmniDB does not remove the
breakpoint you placed. To do that, you can click in the breakpoint little icon.
Now hit Resume again. Let us see now what happens when the function finishes.

[image: ../_images/image_084.png]

OmniDB will go automatically to the Statistics tab, which shows 2 interesting
features:

	Sum of Duration per Line of Code Chart: in the bottom, a chart represents
total duration of the function distributed in the lines of code. With this
chart, you can easily spot bottlenecks in your code. In our example, it was line
15, which we deliberately put a pg_sleep(1) call;

	Colored lines of source code: OmniDB colors the lines accordingly to the
numbers seen in the chart. Colors vary from blue (small duration), passing
through yellow (medium duration) until red (high duration), as in a
temperature diagram.

Also note the Total duration message, which shows execution time of the
function, without considering the time you spent analyzing it.

Inspecting record attribute values

An interesting feature that we do not usually see in other debuggers is the
ability to inspect each attribute of a variable of type record. OmniDB
debugger does that as it is split into different variables, allowing you to see
the value and type of each attribute.

To illustrate that, let us create another function, similar to the previous one,
but now called fnc_count_vowels2:

CREATE OR REPLACE FUNCTION public.fnc_count_vowels2 (p_input text)
RETURNS integer LANGUAGE plpgsql AS
$function$
DECLARE
 str text;
 i integer;
 len integer;
 rec record;
BEGIN
 str := upper(p_input);
 i := 1;
 len := length(p_input);
 SELECT 0 AS a, 0 AS e, 0 AS i, 0 AS o, 0 AS u INTO rec;
 WHILE i <= len LOOP
 CASE substr(str, i, 1)
 WHEN 'A' then rec.a := rec.a + 1;
 WHEN 'E' then rec.e := rec.e + 1;
 WHEN 'I' then rec.i := rec.i + 1;
 WHEN 'O' then rec.o := rec.o + 1;
 WHEN 'U' then rec.u := rec.u + 1;
 ELSE NULL;
 END CASE;
 i := i + 1;
 END LOOP;
 RETURN rec.a + rec.e + rec.i + rec.o + rec.u;
END;
$function$

[image: ../_images/image_084.png]

Observe how we keep track of every vowel count individually. Now let us start
debugging it, using the same text as before ('The quick brown fox jumps over the lazy dog.'):

[image: ../_images/image_086.png]

[image: ../_images/image_087.png]

Note from the picture above that PostgreSQL created an internal Case Variable.
Also note that the variable rec is not shown in the list of known variables.
This is because PostgreSQL still does not know what attributes rec will
contain. Let’s step over some more steps.

[image: ../_images/image_088.png]

Right after the execution of line 11, rec variable comes to life and we can
see it has 5 attributes: a, e, i, o and u, all of the type int and
having initial value 0.

Now set a breakpoint in line 23 and click the Resume button.

[image: ../_images/image_089.png]

See how we can inspect every attribute, observing how many of each vowel the
text contain. Now let’s finish this function.

[image: ../_images/image_090.png]

14. Monitoring Dashboard

OmniDB 2.4.0 introduced a new cool feature called Monitoring Dashboard. We
know a picture is worth a thousand words, so please take a look:

[image: ../_images/image_091.png]

As you can see, this is a new kind of inner tab showing some charts and grids.
This Monitoring inner tab is automatically opened once you expand the tree
root node (the PostgreSQL node). You can keep it open or close it at any time.
To open it again, right-click the root node and click on Dashboard.

[image: ../_images/image_092.png]

The dashboard is composed of handy information rectangles called Monitoring
Units. Here is an example of Monitoring Unit and its interface elements:

[image: ../_images/image_093.png]

	1: Title of the Monitoring Unit;

	2: Refresh the Monitoring Unit. Depending on the type, clicking on this
button will refresh the entire drawing area or just make the chart acquire a new
set of values;

	3: Pause the Monitoring Unit;

	4: Interval in seconds for automatic refreshing;

	5: Remove the Monitoring Unit of the Monitoring Dashboard;

	6: Drawing area, that will be different depending on the type of the
Monitoring Unit.

Types of Monitoring Units

Currently there are 3 types of Monitoring Units:

	Grid: The most simple kind, just executes a query from time to time and
shows the results in a data grid.

[image: ../_images/image_094.png]

	Chart: Every time it refreshes, it renders a new complete chart. The old
set of values is lost. This is most useful for pie charts, but other kind of
charts can be used too.

[image: ../_images/image_095.png]

	Chart-Append: Perhaps this is the most useful kind of Monitoring Unit.
It is a chart that appends a new set of values every time it refreshes. Line or
bar charts fit best for this type. The last 50 set of values are kept by the
component client-side to be viewed by the user.

[image: ../_images/image_096.png]

Showing and hiding units in the dashboard

If you click in the button Refresh All, then all Monitoring Units will be
refreshed at once. You can also remove undesired Monitoring Units by clicking in
the Remove button. Let us go ahead and remove all units from the dashboard,
making it empty:

[image: ../_images/image_097.png]

All Monitoring Units that come with OmniDB are open source and available in this
repository [https://github.com/OmniDB/monitors] (feel free to contribute). But
be aware that some Monitoring Units require the plpythonu script to be
installed in the database. Please refer to the instructions specific to your
operating system on how to install plpythonu if you desire to use and create
Monitoring Units that use plpythonu.

[image: ../_images/image_098.png]

Now that our dashboard is empty, let us add some units. Click on the Manage
Units button.

[image: ../_images/image_099.png]

Click on the green action to add the Monitoring Units called CPU Usage and
Memory Usage. Bear in mind that both units require plpythonu extension in
the database. CPU Usage also requires that the tool mpstat should be
installed in the server. Also both units are of type Chart-Append. Wait for
some seconds and you will have a dashboard like this:

[image: ../_images/image_100.png]

In a similar way, you can add and remove any unit you want to customize the
dashboard the way you want.

Writing custom Monitoring Units: Grid

OmniDB provides you the power to write your own units and customize existing
ones. Everything is done through Python scripts that run inside a sandbox.
Beware that units powered by plpythonu can have access to the file system
the database user also has access to, and any Monitoring Unit have the same
permission as the database user you configured in the Connection.

To create a new Monitoring Unit, click on the Manage Units button in the
dashboard, then click on the New Unit button. It will open a new kind of inner
tab like this:

[image: ../_images/image_101.png]

The easiest way to write a custom unit is to use an existing one as template. Go
ahead and select the (Grid) Activity template:

[image: ../_images/image_102.png]

Note how OmniDB fills the Data Script source code. This script is responsible
for generating data for the unit every time it refreshes. As a grid unit is
nothing else but a grid of data, we can rely on only this script for now.

Now let us take a look at the source code of this template:

from datetime import datetime

data = connection.Query('''
 SELECT *
 FROM pg_stat_activity
''')

result = {
 "columns": data.Columns,
 "data": data.Rows
}

It is simple enough. It executes an SQL query into the current connection using
the reserved connection variable. Also, the grid unit type expects its results
in a JSON variable that must be called result and must have the attributes
"columns" (an array of column names) and "data" (an array of rows, each row
being an array of values). The connection.Query() function already does the
job pretty well, so let us just change the SQL query this way:

from datetime import datetime

data = connection.Query('''
 SELECT random() as "Random Number"
''')

result = {
 "columns": data.Columns,
 "data": data.Rows
}

Copy and paste the above Python code into the Data Script text field and then
click on the Test (lighting) button:

[image: ../_images/image_103.png]

Note how the grid was rendered in the preview drawing area. You can click the
Test button as many times as you want. Now we will give the unit a name, set
a refresh interval and then hit the Save button:

[image: ../_images/image_104.png]

Click the OK button and then close the edit tab. Our new Monitoring Unit will
be in the list of available units. As we created this unit, we can either add it
to the dashboard, edit it or remove it. Let us add it to the dashboard (green
action):

[image: ../_images/image_105.png]

Writing custom Monitoring Units: Chart

Click in the Manage Units button and then in the New Unit button. This time
we will create a Chart Monitoring Unit. So choose (Chart) Database Size as a
template.

[image: ../_images/image_106.png]

The source code of this kind of unit is more complex. There are two scripts:

	Data Script: Executed every time the unit is refreshed;

	Chart Script: Executed only at the beginning to build the chart.

The chart units are based in the component Chart.js [http://www.chartjs.org/]
and each chart type contains a specific JSON structure. The best approach to
build new chart units is to start from a template and also check the
Chart.js docs [http://www.chartjs.org/docs/latest/] to see every property that
can be added to make the output even better for each situation.

Let us take a look at the Data Script:

from datetime import datetime
from random import randint

databases = connection.Query('''
 SELECT d.datname AS datname,
 round(pg_catalog.pg_database_size(d.datname)/1048576.0,2) AS size
 FROM pg_catalog.pg_database d
 WHERE d.datname not in ('template0','template1')
''')

data = []
color = []
label = []

for db in databases.Rows:
 data.append(db["size"])
 color.append("rgb(" + str(randint(125, 225)) + "," + str(randint(125, 225)) + "," + str(randint(125, 225)) + ")")
 label.append(db["datname"])

result = {
 "labels": label,
 "datasets": [
 {
 "data": data,
 "backgroundColor": color,
 "label": "Dataset 1"
 }
]
}

Here we can see that the reserved variable connection is still being used to
retrieve data from the database. Bear in mind that this variable is always
pointing to the current Connection.

This template is for a Pie chart, which contains only one dataset and three arrays
for the data:

	data: One value per slice;

	color: One color per slice;

	label: One label per slice.

This way, data[0], color[0] and label[0] refer to the first slice, while
data[1], color[1] and label[1] refer to the second slice, and so on.

This script must return a variable called result and also needs to be a JSON
like in the above script.

So right now you are probably guessing that you just need to change the SQL
query to make the chart behave different. Well, in terms of data and datasets,
you guessed right. So let’s change the SQL query of this chart to compare sizes
of tables of schema public. Also change the references from datname to
tablename, as we have changed the column name.

from datetime import datetime
from random import randint

databases = connection.Query('''
 SELECT c.relname as tablename,
 round(pg_catalog.pg_total_relation_size(c.oid)/1048576.0,2) AS size
 FROM pg_catalog.pg_class c
 INNER JOIN pg_catalog.pg_namespace n
 ON n.oid = c.relnamespace
 WHERE n.nspname = 'public'
 AND c.relkind = 'r'
''')

data = []
color = []
label = []

for db in databases.Rows:
 data.append(db["size"])
 color.append("rgb(" + str(randint(125, 225)) + "," + str(randint(125, 225)) + "," + str(randint(125, 225)) + ")")
 label.append(db["tablename"])

result = {
 "labels": label,
 "datasets": [
 {
 "data": data,
 "backgroundColor": color,
 "label": "Dataset 1"
 }
]
}

Copy and paste the above script into the Data Script field and then hit the
Test button:

[image: ../_images/image_107.png]

Apparently the chart is almost done. We need to fix the title, it still says
Database Size, when this chart is about table size. Any information about the
format of the chart itself is defined in the Chart Script text field. Let us
understand the current source code:

total_size = connection.ExecuteScalar('''
 SELECT round(sum(pg_catalog.pg_database_size(datname)/1048576.0),2)
 FROM pg_catalog.pg_database
 WHERE NOT datistemplate
''')

result = {
 "type": "pie",
 "data": None,
 "options": {
 "responsive": True,
 "title":{
 "display":True,
 "text":"Database Size (Total: " + str(total_size) + ")"
 }
 }
}

Easy enough. We can make use of the reserved variable connection to retrieve
data in the Chart Script too. This is mainly used to put information in the
chart title. The variable result must be defined here. Note how its JSON
value defines a pie chart and the title. So we just need to change the query and
adjust the title, this way:

total_size = connection.ExecuteScalar('''
 SELECT round(sum(pg_catalog.pg_total_relation_size(c.oid)/1048576.0),2) AS size
 FROM pg_catalog.pg_class c
 INNER JOIN pg_catalog.pg_namespace n
 ON n.oid = c.relnamespace
 WHERE n.nspname = 'public'
 AND c.relkind = 'r'
''')

result = {
 "type": "pie",
 "data": None,
 "options": {
 "responsive": True,
 "title":{
 "display":True,
 "text":"Table Size (Total: " + str(total_size) + ")"
 }
 }
}

Copy and paste the above Python code into the Chart Script. Then click in the
Test button:

[image: ../_images/image_108.png]

Now that the chart finally works the way we want, we can give it a title, adjust
the refresh interval and then click in the Save button. After that we can add
it to the dashboard.

[image: ../_images/image_109.png]

[image: ../_images/image_110.png]

Writing custom Monitoring Units: Chart-Append

Now for the last, but most interesting kind of Monitoring Unit: Chart-Append.
It is interesting because there is a wide range of applications for these units,
since they keep recent historic data that allows us to see a comparison of
values.

Go ahead and add a new chart using (Chart (Append)) Size: Top 5 Tables as
template:

[image: ../_images/image_111.png]

Now take a look at the source code of both Data Script and Chart Script. It
is not too different from the Chart units. The dataset creation is a bit more
complex as it involves other JSON settings, but that’s all.

As an exercise, based on this chart, create another one called Size: Top 20
Tables. It should look like this:

[image: ../_images/image_112.png]

Now save it and add it to your dashboard:

[image: ../_images/image_113.png]

15. Logical Replication

PostgreSQL 10 introduces native logical replication, which uses a
publish/subscribe model and so we can create publications on the upstream (or
publisher) and subscriptions on downstream (or subscriber). For more details
about it, please refer to the
PostgreSQL [https://www.postgresql.org/docs/10/static/sql-createpublication.html]
documentation [https://www.postgresql.org/docs/10/static/sql-createsubscription.html].

In this chapter, we will use a 2-node cluster to demonstrate PostgreSQL 10
native logical replication. Note that on each PostgreSQL instance, you need to
configure wal_level = logical and also make sure to adjust file pg_hba.conf
to grant access to replication between the 2 nodes.

Creating a test environment

OmniDB repository provides a 2-node Vagrant test environment. If you want to
use it, please do the following:

git clone --depth 1 https://github.com/OmniDB/OmniDB
cd OmniDB/OmniDB_app/tests/vagrant/postgresql-10-2nodes/
vagrant up

It will take a while, but once finished, 2 virtual machines with IP addresses
10.33.2.114 and 10.33.2.115 will be up and each of them will have PostgreSQL
10 listening to port 5432, with all settings needed to configure native
logical replication. A new database called omnidb_tests is also created on
both machines. To connect, user is omnidb and password is omnidb.

Connecting to both nodes

Let’s use OmniDB to connect to both PostgreSQL nodes. First of all, fill out
connection info in the connection grid:

[image: ../_images/image_117.png]

Then select both connections. Note how OmniDB understands it is connected to
PostgreSQL 10 and enables a new node in the current connection tree view: it is
called Logical Replication. Inside of it, we can see Publications and
Subscriptions.

[image: ../_images/image_118.png]

Creating a test table on both nodes

On both nodes, create a table like this:

CREATE TABLE customers (
 login text PRIMARY KEY,
 full_name text NOT NULL,
 registration_date timestamptz NOT NULL DEFAULT now()
)

[image: ../_images/image_119.png]

Create a publication on the first machine

Inside the connection node, expand the Logical Replication node, then right
click in the Publications node, and choose the action Create Publication.
OmniDB will open a SQL template tab with the CREATE PUBLICATION command ready
for you to make some adjustments and run:

[image: ../_images/image_120.png]

After adjusting and executing the command, you can right click the Publications
node again and click on the Refresh action. You will see that will be created
a new node with the same name you gave to the publication. Expanding this node,
you will see the details and the tables for the publication:

[image: ../_images/image_121.png]

Create a subscription on the second machine

Inside the connection node, expand the Logical Replication node, then right
click in the Subscriptions node, and choose the action Create Subscription.
OmniDB will open a SQL template tab with the CREATE SUBSCRIPTION command ready
for you to make some adjustments and run:

[image: ../_images/image_122.png]

After adjusting and executing the command, you can right click the Subscriptions
node again and click on the Refresh action. You will see that will be created
a new node with the same name you gave to the subscription. Expanding this node,
you will see the details, the referenced publications and the tables for the
subscription:

[image: ../_images/image_123.png]

Also, the CREATE SUBSCRIPTION command created a logical replication slot
called testsub (the same name as the subscription) in the first machine:

[image: ../_images/image_124.png]

Testing the logical replication

To test the replication is working, let’s create some data on the node 1. Right
click on the table public.customers, then point to Data Actions, then click
on the action Edit Data. In this grid, you are able to add, edit and remove
data from the table. Add 2 sample rows, like this:

[image: ../_images/image_125.png]

Then, on the other node, check if the table public.customers was automatically
populated. Right click on the table public.customers, then point to Data
Actions, then click on the action Query Data:

[image: ../_images/image_126.png]

As we can see, both rows created in the first machine were replicated into the
second machine. This tell us that the logical replication is working.

Now you can perform other actions, such as adding/removing tables to the
publication and creating a new publication that publishes all tables.

16. pglogical

pglogical [https://www.2ndquadrant.com/en/resources/pglogical/] is a PostgreSQL
extension that provides an advanced logical replication system that serves as a
highly efficient method of replicating data as an alternative to physical
replication.

In this chapter, we will use a 2-node cluster to demonstrate pglogical with
PostgreSQL 10. Note that on each PostgreSQL instance, you need to configure:

wal_level = 'logical'
track_commit_timestamp = on
max_worker_processes = 10 # one per database needed on provider node
 # one per node needed on subscriber node
max_replication_slots = 10 # one per node needed on provider node
max_wal_senders = 10 # one per node needed on provider node
shared_preload_libraries = 'pglogical'

Also make sure to adjust file pg_hba.conf to grant access to replication
between the 2 nodes.

Creating a test environment

OmniDB repository provides a 2-node Vagrant test environment. If you want to
use it, please do the following:

git clone --depth 1 https://github.com/OmniDB/OmniDB
cd OmniDB/OmniDB_app/tests/vagrant/pglogical-2-postgresql-10-2nodes/
vagrant up

It will take a while, but once finished, 2 virtual machines with IP addresses
10.33.3.114 and 10.33.3.115 will be up and each of them will have PostgreSQL
10 listening to port 5432, with all settings needed to configure pglogical
replication. A new database called omnidb_tests is also created on
both machines. To connect, user is omnidb and password is omnidb.

Install OmniDB pglogical plugin

OmniDB core does not support pglogical by default. You will need to download and
install pglogical plugin. If you are using OmniDB server, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-pglogical_1.0.0.zip
unzip omnidb-pglogical_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-server/OmniDB_app/
sudo systemctl restart omnidb

And then refresh the OmniDB web page in the browser.

For OmniDB app, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-pglogical_1.0.0.zip
unzip omnidb-pglogical_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-app/resources/app/omnidb-server/OmniDB_app/

And then restart OmniDB app.

If everything worked correctly, by clicking on the “plugins” icon in the top
right corner, you will see the plugin installed and enabled:

[image: ../_images/image_193.png]

Connecting to both nodes

Let’s use OmniDB to connect to both PostgreSQL nodes. First of all, fill out
connection info in the connection grid:

[image: ../_images/image_128.png]

Then select both connections.

Create pglogical extension in both nodes

pglogical requires an extension to be installed in both nodes. Inside OmniDB,
you can create the extension by right clicking on the Extensions node, and
choosing the action Create Extension. OmniDB will open a SQL template tab with
the CREATE EXTENSION command ready for you to make some adjustments and run:

[image: ../_images/image_129.png]

After you have created the extension, you need to refresh the root node of the
treeview, by right-clicking on it and choosing Refresh. Then you will see that
OmniDB already acknowledges the existence of pglogical in this database.
However, pglogical is not active yet.

[image: ../_images/image_130.png]

Create pglogical nodes

To activate pglogical in this database, we need to create a pglogical node on
each machine. Inside the pglogical node of the treeview, right click Nodes,
then choose Create Node. In the SQL template that will open, adjust the node
name and the DSN and run the command.

[image: ../_images/image_131.png]

Then right click Nodes again, but this time choose Refresh. You will see
the node you just created. Note how OmniDB understands that this node is local.
Expand the local node to see its interface inside. You can manage the interfaces
of the nodes using OmniDB too.

Go ahead and expand the Replication Sets node. You can see pglogical default
replication sets are already created: ddl_sql, default and
default_insert_only. You can also manage replication sets using OmniDB.

[image: ../_images/image_132.png]

Now create a node on the other machine too. Choose a different name for the
node.

Create a table on the first machine

In the first machine, under the Schemas node, expand the public node, then
right-click the Tables node and choose Create Table. In the form tab that
will open, give the new table a name and some columns. Also add a primary key in
the Constraints tab. When done, click in the Save Changes button.

[image: ../_images/image_133.png]

[image: ../_images/image_134.png]

Add the new table to a replication set on the first machine

In the first machine, under the default_insert_only replication set, right
click the Tables node and choose Add Table. In the SQL template tab that
will open, change the table name in the relation argument and then execute the
command.

[image: ../_images/image_135.png]

Refresh the Tables node to check the table was added to the replication set.

[image: ../_images/image_136.png]

Add a subscription on the second machine

In the second machine, right-click the Subscriptions node and choose Create
Subscription. In the SQL template tab that will open, change DSN of the first
machine and then execute the command.

[image: ../_images/image_137.png]

Refresh and expand both Nodes and Subscriptions nodes of the treeview. Note
how now the second machine knows about the first machine. Also check the
information OmniDB shows about the subscription we just created.

[image: ../_images/image_138.png]

Also verify that the table public.test_table was created automatically in the
second machine:

[image: ../_images/image_139.png]

Add some data in the table on the first machine

In the first machine, under the Schemas node, expand the public node and
the Tables node. Right-click in our table, test_table, move the mouse
pointer to Data Actions and then click on Edit Data. Insert some data to the
table. When finished, click on the Save Changes button.

[image: ../_images/image_140.png]

Now let us check the data was replicated. Go to the second machine and
right-click the table, move the mouse pointer to Data Actions and then click
on Query Data.

[image: ../_images/image_141.png]

Check if delete is being replicated

In the Edit Data tab in the first machine, remove Pete and Stuart. Click on
the button Save Changes when done.

[image: ../_images/image_142.png]

Check if these 2 rows were deleted in the second machine.

[image: ../_images/image_143.png]

They were not removed in the second machine because the table
public.test_table is in the replication set default_insert_only, that does
not replicate updates and deletes.

17. Postgres-BDR

Postgres-BDR [https://www.2ndquadrant.com/en/resources/bdr/] (or just BDR,
for short) is an open source project from 2ndQuadrant that provides multi-master
features for PostgreSQL.

In this chapter, we will use a 2-node cluster to demonstrate Postgres-BDR 9.4.
Note that on each PostgreSQL instance, you need to configure:

wal_level = 'logical'
track_commit_timestamp = on
max_worker_processes = 10 # one per database needed on provider node
 # one per node needed on subscriber node
max_replication_slots = 10 # one per node needed on provider node
max_wal_senders = 10 # one per node needed on provider node
shared_preload_libraries = 'bdr'

Also make sure to adjust file pg_hba.conf to grant access to replication
between the 2 nodes.

Creating a test environment

OmniDB repository provides a 2-node Vagrant test environment. If you want to
use it, please do the following:

git clone --depth 1 https://github.com/OmniDB/OmniDB
cd OmniDB/OmniDB_app/tests/vagrant/postgresql-bdr-9.4-2nodes/
vagrant up

It will take a while, but once finished, 2 virtual machines with IP addresses
10.33.4.114 and 10.33.4.115 will be up and each of them will have PostgreSQL
10 listening to port 5432, with all settings needed to configure BDR
multi-master replication. A new database called omnidb_tests is also created
on both machines. To connect, user is omnidb and password is omnidb.

Install OmniDB BDR plugin

OmniDB core does not support BDR by default. You will need to download and
install BDR plugin. If you are using OmniDB server, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-bdr_1.0.0.zip
unzip omnidb-bdr_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-server/OmniDB_app/
sudo systemctl restart omnidb

And then refresh the OmniDB web page in the browser.

For OmniDB app, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-bdr_1.0.0.zip
unzip omnidb-bdr_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-app/resources/app/omnidb-server/OmniDB_app/

And then restart OmniDB app.

If everything worked correctly, by clicking on the “plugins” icon in the top
right corner, you will see the plugin installed and enabled:

[image: ../_images/image_201.png]

Connecting to both nodes

Let’s use OmniDB to connect to both PostgreSQL nodes. First of all, fill out
connection info in the connection grid:

[image: ../_images/image_144.png]

Then select both connections.

Create required extensions

BDR requires 2 extensions to be installed on each database that should have
multi-master capabilities: btree_gist and bdr. Inside OmniDB, you can create
both extensions by right clicking on the Extensions node, and choosing the
action Create Extension. OmniDB will open a SQL template tab with the CREATE EXTENSION command ready for you to make some adjustments and run:

[image: ../_images/image_145.png]

You need to create both extensions btree_gist and bdr on both nodes.

Create the BDR group in the first node

With both extensions installed, you can refresh the root node of the OmniDB
tree view. A new BDR node will appear just inside your database. You can
expand this node to see some informations about BDR:

[image: ../_images/image_146.png]

As you can see, BDR is not active yet. In the first node, we need to create a
BDR group. The other nodes will join this group later.

To create a BDR group, right click in the BDR node. In the SQL template,
adjust the node name and the node external connection info (the way other nodes
will use to connect to this node):

[image: ../_images/image_147.png]

After you execute the above command, right click the BDR node and choose
Refresh. You will see that now BDR is active in this node, now called node1.
If you expand Nodes, you will see that this BDR group has only 1 node:

[image: ../_images/image_148.png]

Join the BDR group in the second node

Now let’s move to the other node. You can see that BDR is installed but not
active yet. To link the two nodes, we will need to make this node join the BDR
group that was previously created in the first node:

[image: ../_images/image_149.png]

And now we can see that the second node has BDR active, his name in the BDR
group is node2, and now the BDR group has 2 nodes:

[image: ../_images/image_150.png]

Creating a table in the first node

Let’s create a table in the first node. Expand the public schema, right click
the Tables node and choose Create Table. Give the new table a name and add
some columns. When done, click in the button Save Changes:

[image: ../_images/image_151.png]

Now confirm that the table has been created in the first node by right clicking
the Tables node and choosing Refresh. Go to the second node, expand the
schema public, then expand the Tables node. Note that the table has been
replicated from node1 to node2. If the table was created in the second node,
it would have been created in the first node as well, because in BDR all nodes
are masters.

[image: ../_images/image_152.png]

Adding some data in the second node

While you are at the second node, right click the table bdrtest, point to
Data Actions and then click in Edit Data. Add some rows to this table. When
finished, click in the Save Changes button.

[image: ../_images/image_153.png]

Now go to the first node, right click the table, point to Data Actions and
then click in Query Data. See how the rows created in node2 were
automatically replicated into node1.

[image: ../_images/image_154.png]

Adding some data in the first node

Let’s repeat the same procedure above, but instead of inserting rows from the
second node, let’s insert some rows while connected to the first node. Note how
they replicate into the second node in the same way.

[image: ../_images/image_155.png]

[image: ../_images/image_156.png]

18. Postgres-XL

Postgres-XL [https://www.2ndquadrant.com/en/resources/postgres-xl/] (or just
XL, for short) is an open source project from 2ndQuadrant. It is a massively
parallel database built on top of PostgreSQL, and it is designed to be
horizontally scalable and flexible enough to handle various workloads.

In this chapter, we will use a cluster with 4 virtual machines: 1 GTM, 1
coordinator and 2 data nodes.

Machine	IP	Role	
—	—	—	—
xlgtm	10.33.1.114	GTM	
xlcoord	10.33.1.115	coordinator	
xldata1	10.33.1.116	data node	
xldata2	10.33.1.117	data node	

On each machine, you need to clone Postgres-XL repository and compile it. You
also need to set specific XL parameters on file postgresql.conf and make sure
all machines are communicating to each other by adjusting file pg_hba.conf.
More information on how Postgres-XL works and how to install it on
Postgres-XL documentation [https://www.postgres-xl.org/documentation/index.html].
You can also refer to this blog post [https://blog.2ndquadrant.com/postgres-xl-omnidb/].

Creating a test environment

OmniDB repository provides a 4-node Vagrant test environment. If you want to
use it, please do the following:

git clone --depth 1 https://github.com/OmniDB/OmniDB
cd OmniDB/OmniDB_app/tests/vagrant/xl-9.5/
vagrant up

It will take a while, but once finished, 4 virtual machines with IP addresses
10.33.1.114, 10.33.1.115, 10.33.1.116 and 10.33.1.117 will be up and
each of them will have Postgres-XL 9.5 up and listening to port 5432, with all
settings needed. To create all nodes, please do:

vagrant ssh xlcoord -c '/vagrant/setup.sh 10.33.1.115 10.33.1.116 10.33.1.117'
vagrant ssh xldata1 -c '/vagrant/setup.sh 10.33.1.115 10.33.1.116 10.33.1.117'
vagrant ssh xldata2 -c '/vagrant/setup.sh 10.33.1.115 10.33.1.116 10.33.1.117'

Then connect to the coordinator and define a password for the postgres user:

$ vagrant ssh xlcoord -c 'sudo su - postgres -c /usr/local/pgsql/bin/psql'
psql (PGXL 9.5r1.6, based on PG 9.5.12 (Postgres-XL 9.5r1.6))
Type "help" for help.

postgres=# ALTER USER postgres PASSWORD 'omnidb';
ALTER ROLE
postgres=#

Now the XL cluster will be ready for you to use.

Install OmniDB XL plugin

OmniDB core does not support XL by default. You will need to download and
install XL plugin. If you are using OmniDB server, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-xl_1.0.0.zip
unzip omnidb-xl_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-server/OmniDB_app/
sudo systemctl restart omnidb

And then refresh the OmniDB web page in the browser.

For OmniDB app, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-xl_1.0.0.zip
unzip omnidb-xl_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-app/resources/app/omnidb-server/OmniDB_app/

And then restart OmniDB app.

If everything worked correctly, by clicking on the “plugins” icon in the top
right corner, you will see the plugin installed and enabled:

[image: ../_images/image_202.png]

Connecting to the cluster

Let’s use OmniDB to connect to the coordinator node. First of all, fill out
connection info in the connection grid:

[image: ../_images/image_157.png]

Then select the connection. You will see OmniDB workspace window. Expand the
tree root node. Note that OmniDB identifies it is connected to a Postgres-XL
cluster and shows a specific node called Postgres-XL just inside the tree root
node. Expand this node to see all the nodes we have in our cluster:

[image: ../_images/image_158.png]

Creating a HASH table

From the root node, expand Schemas, then public, then right click on the
Tables node. Click on Create Table. Name your new table, add some columns to
it and do not forget to add a primary key too:

[image: ../_images/image_159.png]

[image: ../_images/image_160.png]

When done, click on the Save Changes button. Now right click on the Tables
node and click on Refresh. You will see the new table created. Expand it to
see that there is also a Postgres-XL node inside of it. Check its properties.

[image: ../_images/image_161.png]

By default, Postgres-XL always try to create a table distributed by HASH. It
means that the data will be split into the nodes regularly, through a hash
function applied on the specified column. If present, it will use the primary
key, or a unique constraint otherwise. If there is no primary key nor unique
constraint, Postgres-XL uses the first eligible column. If not possible to
distribute by HASH, then Postgres-XL will create the table distributed by
ROUNDROBIN, which means that the data will be split in a way that every new
row will be added to a different data node.

Now let’s add some rows in our new table. Right click on the table, then go to
Data Actions and then click on Edit Data. Add some rows and then click on
the Save Changes button:

[image: ../_images/image_162.png]

Right click on the table again, Data Actions, Query Data. You will see that
cluster-wide the table has all data inside.

[image: ../_images/image_163.png]

But how the data was distributed in the data nodes? In the Postgres-XL main
node, right click on each node and click on Execute Direct. Adjust the query
that will be executed directly into the data node, as you can see below.

[image: ../_images/image_164.png]

[image: ../_images/image_165.png]

Creating a REPLICATION table

While HASH distribution is great for write-only and write-mainly tables,
REPLICATION distribution is great for read-only and read-mainly tables. However,
a table distributed by REPLICATION will store all data in all nodes it is
located.

In order to create a REPLICATION table, let us create a new table like we did
before:

[image: ../_images/image_166.png]

[image: ../_images/image_167.png]

Note how by default it was created as a HASH table:

[image: ../_images/image_168.png]

Let us change the distribution type of the table by right-clicking on the
Postgres-XL node inside the table, and then clicking on Alter Distribution.
Uncomment the “REPLICATION” line and execute the command:

[image: ../_images/image_169.png]

You can check the distribution was successfully changed by right-clicking on the
Postgres-XL node and clicking on Refresh. The properties will now show
Distributed by: replication.

[image: ../_images/image_170.png]

Now add some data to the table:

[image: ../_images/image_171.png]

And then check that all data exist on all data nodes:

[image: ../_images/image_172.png]

[image: ../_images/image_173.png]

19. Deploying omnidb-server

Whenever deploying omnidb-server the user must be aware of how OmniDB works in
terms of ports so the environment can be properly configured taking the
infrastructure into account.

OmniDB uses 2 servers to answer user requests, one is the default webserver
serving the application itself and the other is a websocket server used by
several parts of OmniDB, such as Query, Console and Debugging Tab, allowing a
bi-directional communication between the client and the server which enhances
performance and user experience. This means that 2 ports need to be properly
configured:

	OmniDB server:

	Technology: CherryPy

	Default port: 8000

	Websocket server:

	Technology: Tornado

	Default port: 25482

Both servers support SSL so OmniDB can run by itself securely without the need
of a load balancer or reverse proxy, such as Nginx.

The configuration of ports and certificates can be done via command options or
configuration file.

Command options

Usage: omnidb-server [options]

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -H HOST, --host=HOST listening address
 -p PORT, --port=PORT listening port
 -w WSPORT, --wsport=WSPORT
 websocket port
 -e EWSPORT, --ewsport=EWSPORT
 external websocket port
 -d HOMEDIR, --homedir=HOMEDIR
 home directory containing local databases config and
 log files
 -c CONF, --configfile=CONF
 configuration file

	-H specifies in what addresses the servers will listen, the default value is
0.0.0.0 meaning that all addresses bound to the machine will be used
(127.0.0.1, 192.168.0.100, 162.154.12.35, for example).

	-p specifies in what port OmniDB server will listen, this is the port used
in the browser’s URL if OmniDB is being accessed directly. The default value is

	

	-w specifies in what port the websocket server will listen. If OmniDB is
being accessed directly the websocket client will connect to this port. The
default value is 25482.

	-e specifies in what port the websocket client (the page opened in your
browser) will connect. This option is used when OmniDB is behind a load balancer
and the tornado server isn’t being accessed directly, in this case we must tell
websocket client what port to use. If not specified the client will use the port
specified in -w.

	-d This parameter let’s the user choose what folder will store the
persistent files, such as omnidb.conf, omnidb.log, db.sqlite3 (sessions
database) and omnidb.db (application database). With this option is possible to
have several instances of omnidb-server running, each one pointing to a
specific directory. It also facilitates the deployment with Docker as it enables
to point OmniDB to a mounted volume.

	-c Points OmniDB to a specific configuration file, can be used along with
-d to specify a storage folder but choosing a specific config file.

Configuration File

The configuration file, omnidb.conf by default, can be used to set all the
parameters specified in the previous category and a few additional parameter
related to SSL and some about the query server itself.

This file is created when OmniDB is started for the first time or when a new
folder is specified with the option -d. If no folder is specified the default
location for files is:

	Linux: ~/.omnidb/omnidb-server/

	Windows: User Folder/.omnidb/omnidb-server/

Here is the default configuration file:

OmniDB Server configuration file

[webserver]

What address the webserver listens to, 0.0.0.0 listens to all addresses bound to the machine
listening_address = 127.0.0.1

Webserver port, if port is in use another random port will be selected
listening_port = 8000

Websocket port, if port is in use another random port will be selected
websocket_port = 25482

External Websocket port, use this parameter if OmniDB isn't directly visible by the client
external_websocket_port = 25482

Security parameters
is_ssl = True requires ssl_certificate_file and ssl_key_file parameters
This is highly recommended to protect information
is_ssl = False
ssl_certificate_file = /path/to/cert_file
ssl_key_file = /path/to/key_file

Trusted origins, use this parameter if OmniDB is configured with SSL and is being accessed by another domain
csrf_trusted_origins = origin1,origin2,origin3

[queryserver]

#Max number of threads that can used by each advanced object search request
thread_pool_max_workers = 2

#Number of seconds between each prompt password request. Default: 30 minutes
pwd_timeout_total = 1800

	is_ssl: specifies whether to run securely or not.

	ssl_certificate_file: path to the certificate file.

	ssl_key_file: path to the key file.

	csrf_trusted_origins: list of trusted origins. When OmniDB is started with
SSL and the browser is accessing it through another domain this parameter must
specifies the domain in order to properly establish communication.

	thread_pool_max_workers: defines the max number of threads that can be used
in advanced object search requests. That feature uses such mechanism to perform
searches in parallel. This requires a tunning. Too much workers can be even
worse than less of them.

	pwd_timeout_total: defines the timeout of typed password in the interface,
that is, the time before the last typed password being considered as expired.
The value is set in seconds. Defaults to 30 minutes.

Let’s take a look on how to deploy omnidb-server in different scenarios:

Deploying OmniDB directly

In this case no load balancers or reverse proxies are used, OmniDB is accessed
directly and is extremely recommended to start it with SSL enabled if it
will be visible to the outside world.

For this scenario the user needs to specify the following parameters:

	-H or listening_address: Specify the address visible to the clients, can
be a domain.

	-p or listening_port: Specify a port that will be used in the browser
url: https://mydomain.com:PORT

	-w or websocket_port: Specify a port that will be used by javascript to
connect to Tornado server directly.

	is_ssl: True

	ssl_certificate_file: /path/to/file

	ssl_key_file: /path/to/file

	-e or external_websocket_port: external websocket port isn’t needed as -w
will be used directly.

It is important to mention here that both ports need to visible to every client
trying to access OmniDB.

Deploying OmniDB behind a reverse proxy

In this case OmniDB won’t be accessed directly but through a properly configured
load balancer or reverse proxy.

For this scenario a possible approach is to run omnidb-server listening to the
local address 127.0.0.1 and without SSL, given that the balancer will handle
the security part.

The following parameters are required:

	-H or listening_address: 127.0.0.1.

	-p or listening_port: Specify a port to which the load balancer will
redirect all the OmniDB server requests.

	-w or listening_port: Specify a port to which the load balancer will
redirect all the Websocket server requests.

	-e or external_websocket_port: Specify a port that will be used by
JavaScript to connect to Tornado server. Since OmniDB is behind a load balancer,
a port being listened by the load balancer should be specified here and the
balancer will redirect all requests to the port specified with -w. It is
possible to specify the same port used to access OmniDB but then the load
balancer needs to proxy requests to the specific server according to the URL
pattern.

Consider this example of OmniDB being hosted behind Nginx:

	Starting omnidb-server:

omnidb-server -H 127.0.0.1 -p 9000 -w 26500 -e 443

In this case OmniDB can only be accessed locally and the browser will try to
connect to the websocket server with the default https port (443).

	Nginx configuration file:

server {
 listen 443 ssl;
 listen [::]:443 ssl;
 include snippets/ssl-domain.conf;
 include snippets/ssl-params.conf;
 server_name domain.org;
 client_max_body_size 75M;

 location /wss {
 proxy_pass http://127.0.0.1:26500;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Ssl https;
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Port 443;
 proxy_set_header Host $host;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }

 location / {
 proxy_pass http://127.0.0.1:9000;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Ssl https;
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Port 443;
 proxy_set_header Host $host;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }
}

As can be seen, Nginx is listening for requests to domain.org in port 443.
Since we also specified the external websocket port to 443, websocket requests
will be dealt here too.

Websocket requests are always directed to the pattern /wss so we use a
specific location configuration to redirect all requests to the port specified
with -w, 26500 in this case.

Other requests that are not to /wss should all be redirected to OmniDB server,
9000 in this case.

20. Console Tab

Introduced in OmniDB 2.6.0, the new OmniDB Console Tab provides an easy and
confortable way to interact with your databases. Users familiar with the psql
command line utility will find that Console Tab behaves very similarly. In
fact, many of the backslash commands Console Tab provides are present in psql.

[image: ../_images/image_179.png]

For example, \? shows a list with all commands available, its syntax and
description. The command \h can be another friend of yours, because it shows
a comprehensive help about any PostgreSQL SQL command.

[image: ../_images/image_180.png]

The editor on the bottom of the tab area is full-featured just like the Query
Tab editor (it provides syntax highlight and autocomplete with Ctrl-Space).
To execute a command, just type it in this editor. If the command is a backslash
(starts with \), just type Enter and it will be executed. If it is a regular
SQL command, then it can be multi-lined, and you will need to type Alt-Q to
execute it.

All commands and its output will be logged into the display area, which is
textual and read-only, so you can copy and paste its contents somewhere else.
You can clear the display area by clicking on the Clear Console button.

All commands also are logged in the connection query history, and also in a
local console history, which you can by clicking in the Command History
button.

[image: ../_images/image_181.png]

By clicking in the green check, you can borrow the command and put it into the
editor, so you can amend it and execute it. Another comfortable way to navigate
through the history is using the shortcuts Ctrl-Up and Ctrl-Down, to quickly
paste in the editor the previous and next commands, respectively.

Backslash commands such as \dt, \d+, \x and \timing are very useful when
dealing with databases every day. The console tab will also show any errors and
the results of any SQL command you type in a pretty way. Try it out!

[image: ../_images/image_182.png]

[image: ../_images/image_183.png]

21. Plugin System

OmniDB 2.9 introduces the plugin system, a feature that allows users to develop and
share their own features that can be plugged into OmniDB without having to deploy
the whole application again.

[image: ../_images/image_194.png]

The plugin system is based on hooks that are located in different parts of the
interface. Each plugin can subscribe to any hook and have a collection of API
functions to perform different tasks, such as creating inner/outer tabs, creating
tree nodes and calling python functions in the plugin’s python code.

Here is an example of a plugin that adds the Test action into the inner tab +
context menu:

[image: ../_images/image_195.png]

For more details about the Plugin system, instructions on how to install and also
to develop plugins, please refer to the github page:

Plugin System [https://github.com/OmniDB/plugins]

22. Advanced Object Search

OmniDB 2.9 introduces the a Advanced Object Search feature, allowing users to
use an advanced pattern matching to search database objects and tables data. The
feature allows to use the default SQL LIKE operator and also complex regular
expressions.

You can access the Advanced Object Search feature by right clicking in a specific
database node in the tree:

[image: ../_images/image_196.png]

The interface allows you to filter categories of objects, schemas where
searchs will be executed and also to limit the search space when the Data
category is selected, so you search for a pattern in a subset of tables:

[image: ../_images/image_197.png]

After filling the fields and running OmniDB will perform the search using several
threads that will speed up the process by running in parallel (It is customizable.
For more info, see chapter 19 - Deploying OmniDB).

When the search is finished OmniDB will display the result in a tree:

[image: ../_images/image_198.png]

For more details about the search in each category, right click the desired node
and select ‘See More’. OmniDB will open a query tab with the SQL command used to
perform that specific search. Just run the command to get the results:

[image: ../_images/image_199.png]
[image: ../_images/image_200.png]

23. Debugger Plugin Installation

	1- Linux Installation

	2- Windows Installation

	3- FreeBSD Installation

	4- MacOSX Installation

	5- Post-installation steps ** REQUIRED **

23.1. Linux Installation

You can install from Debian PGDG repository or from standalone packages
or compile from source.

	1.1. Installing from Debian PGDG repository (recommended)

	1.2. Installing from DEB/RPM packages

	1.3. Compiling the extension from source

23.1.1. Installing from Debian PGDG repository

On Debian and Ubuntu systems, this is the recommended way of installing the
OmniDB debugger for PostgreSQL PL/pgSQL functions and procedures.

23.1.1.1. Install Debian PGDG repository (if not already)

sudo echo "deb http://apt.postgresql.org/pub/repos/apt/ $(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list
sudo wget --quiet -O - https://apt.postgresql.org/pub/repos/apt/ACCC4CF8.asc | apt-key add -

23.1.1.2. Install omnidb_plugin for your PostgreSQL version X.Y

sudo apt install postgresql-X.Y-omnidb

23.1.1.3. Set shared_preload_libraries

nano /etc/postgresql/X.Y/main/postgresql.conf
 shared_preload_libraries = 'omnidb_plugin'

sudo systemctl restart postgresql

23.1.1.3. Post-installation steps

23.1.1.3.1. Create omnidb_plugin extension (should be done by a superuser)

psql -d <database> -c 'CREATE EXTENSION omnidb_plugin'

23.1.1.3.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.1.1.3.3. Next steps

Follow Post-installation steps in
section 5.

23.1.2. Installing from DEB/RPM packages

23.1.2.1. Install the package

For example, Debian-like 64 bits:
sudo dpkg -i omnidb-plugin_2.16.0-debian-amd64.deb

For example, for CentOS-like 64 bits:
sudo rpm -ivU omnidb-plugin_2.16.0-centos-amd64.rpm

23.1.2.2. Create a symlink

Find the PostgreSQL version and path for $libdir and create a link to the specific library. For example:
sudo ln -s /opt/omnidb-plugin/omnidb_plugin_96.so /usr/lib/postgresql/9.6/lib/omnidb_plugin.so

23.1.2.3. Set shared_preload_libraries

nano /etc/postgresql/X.Y/main/postgresql.conf
 shared_preload_libraries = 'omnidb_plugin'

sudo systemctl restart postgresql

23.1.2.4. Post-installation steps

23.1.2.4.1. Create omnidb schema in your database (should be done by a superuser)

psql -d <database> -f debugger_schema.sql

23.1.2.4.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.1.2.4.3. Next steps

Follow Post-installation steps in
section 5.

23.1.3. Compiling the extension from source

23.1.3.1. Install headers for PostgreSQL and libpq

sudo apt install postgresql-server-dev-X.Y libpq-dev

23.1.3.2. Compile omnidb_plugin

make

23.1.3.3. Install omnidb_plugin

sudo make install

23.1.3.4. Set shared_preload_libraries

nano /etc/postgresql/X.Y/main/postgresql.conf
 shared_preload_libraries = 'omnidb_plugin'

sudo systemctl restart postgresql

23.1.3.5. Post-installation steps

23.1.3.5.1. Create omnidb_plugin extension (should be done by a superuser)

psql -d <database> -c 'CREATE EXTENSION omnidb_plugin'

23.1.3.5.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.1.3.5.3. Next steps

Follow Post-installation steps in
section 5.

23.2. Windows Installation

23.2.1. Downloading the plugin

Download the zip corresponding to your architecture from the website.

23.2.2. Installing the plugin

Move the omnidb_plugin.dll corresponding to your PostgreSQL version to the
folder lib, which is inside the folder where PostgreSQL was installed.

23.2.3. Set shared_preload_libraries

Change the file PostgreSQL_directory/data/postgresql.conf, including the
following line:

shared_preload_libraries = 'omnidb_plugin'

Then restart PostgreSQL.

23.2.4. Post-installation steps

23.2.4.1. Create omnidb schema in your database (should be done by a superuser)

psql -d <database> -f debugger_schema.sql

23.2.4.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.2.4.3. Next steps

Follow Post-installation steps in
section 5.

23.3. FreeBSD Installation

23.3.1. Downloading the plugin

Download the tar.gz corresponding to your architecture from the website.

wget --no-check-certificate https://omnidb.org/dist/2.16.0/omnidb-plugin_2.16.0-freebsd.tar.gz

23.3.1. Installing the plugin

Move the omnidb_plugin.so corresponding to your PostgreSQL version to the folder
lib, which is inside the folder where PostgreSQL was installed.

tar -xzvf omnidb-plugin_2.16.0-freebsd.tar.gz
cp omnidb-plugin_2.16.0-freebsd/omnidb_plugin_10.so /usr/local/lib/postgresql/omnidb_plugin.so

23.3.3. Set shared_preload_libraries

Change the file PostgreSQL_directory/data/postgresql.conf, including the
following line:

shared_preload_libraries = 'omnidb_plugin'

Then restart PostgreSQL.

23.3.4. Post-installation steps

23.3.4.1. Create omnidb schema in your database (should be done by a superuser)

psql -d <database> -f debugger_schema.sql

23.3.4.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.3.4.3. Next steps

Follow Post-installation steps in
section 5.

23.4. MacOSX Installation

23.4.1. Limitations

If you have PostgreSQL installed in your Mac and want to also install OmniDB
debugger, please be aware that currently we don’t offer any packages for the
debugger for Mac OS X. Your only option is to compile and install from sources.
It is not that hard, as you can see below.

23.4.2. Compiling the extension from source

23.4.2.1. Install SDK headers for Mac OS

sudo installer -pkg /Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_for_macOS_10.14.pkg -target /

23.4.2.2. If not installed, install PostgreSQL from Homebrew

This will also install PostgreSQL headers and libpq.

If brew is not installed yet, you can install it like this:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Then:

brew install postgresql

23.4.2.3. Compile omnidb_plugin

make

23.4.2.4. Install omnidb_plugin

sudo make install

23.4.2.5. Set shared_preload_libraries

vim /usr/local/var/postgres/postgresql.conf
 shared_preload_libraries = 'omnidb_plugin'

brew services restart postgresql

23.4.2.6. Post-installation steps

23.4.2.6.1. Create omnidb_plugin extension (should be done by a superuser)

psql -d <database> -c 'CREATE EXTENSION omnidb_plugin'

23.4.2.6.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.4.2.6.3. Next steps

Follow Post-installation steps in
section 5.

23.5. Post-installation steps ** REQUIRED **

23.5.1. Grant privileges to each database user that will debug functions (should be done by a superuser)

Every database user that uses the debugger needs access to the debugger control
tables.

psql -d <database> -c 'GRANT ALL ON SCHEMA omnidb TO <user>; GRANT ALL ON ALL TABLES IN SCHEMA omnidb TO <user>;'

23.5.2. Enable passwordless access to each database user that will debug functions

Every database user that uses the debugger needs local passwordless access to
the target database. This is because the database will create an additional
local connection to perform debugging operations.

We need to add a rule to pg_hba.conf of type host, matching the PostgreSQL
user and database OmniDB is connected to. The method can be either trust,
which is insecure and not recommended, or md5.

trust

	Add a rule similar to:

TYPE DATABASE USER ADDRESS METHOD
host <database> <user> 127.0.0.1/32 trust
host <database> <user> ::1/128 trust

md5

	Add rules similar to:

TYPE DATABASE USER ADDRESS METHOD
host <database> <user> 127.0.0.1/32 md5
host <database> <user> ::1/128 md5

	Create a .pgpass file with a similar content:

localhost:<port>:<database>:<username>:<password>

More information about how .pgpass works can be found here: https://www.postgresql.org/docs/11/static/libpq-pgpass.html

Index

 _images/image_098.png
}omNiDa Co

@oeistore-ds2 x

(DelStore) postores@postgres
hart B2 | cresterension x

1 CREATE EXTENSION plpythonu
B PostgresaL 969 2 --SCHEMA schema_name|
Y — 3 --VERSION VERSION
s =2 4 --FROM old_version
B posigres 5
B a2
B & Schemas
(& e
& plogsal
" & plytnonu
- @ Foreign Data Wrappers > a @ [Atecommit © 1
e [T
B 38 Roles Dot

‘CREATE EXTENSION

B3 42, Replication Slots

_images/image_099.png
database: ds2

B PostaresaL 969
& & Databases 2)
8 S postgres
B a2

B & Schemas

5{& Extensions @)
& pbosa
& poynons
E3-) Foreign Data Wrappers
B Tablespaces

58t Rokes

B3 72, Replication Siots.

properties | BB

(DeliStore) postores@postres <
127.00.1:5432

Size: Top 5 Tables.
CPU Usage

Locks

Bloat: Top 5 Tables.

Master: Replication Lag
‘Standby: Replication Lag (Size)
‘Standby: Replication Lag (Time)
Memory Usage

Longest Active Query

WAL Folder Size:

Activty

Chart

Chart (Appen)
Chart (Append)
Chart (Append)
Chart (Append)
Chart (Append)
Chart (Append)
Chart (Append)
Chart (Append)
Chart (Append)
Chart (Append)
Chart (Append)
Chart (Append)
Gria

_images/image_096.png
Memory Usage & © 10 ‘seconds x

System Memory Usage (Total: 7675MB)

- verory
100

EY
60
40
20

o
P E LSS A
& F P S S L PF S
@’@’@’@@@@@@@“’@”@”@” §

3

Time

_images/image_097.png
@oeistore-ds2 x

(Deio) posipesarostyes =
- —

E{E PostaresaL963)
5 = Databases 2)

B postgres

B 2

B2 Schemas

B & Extensions

5 @ Foreign Data Wrappers

B Tablespaces

&

B3 42, Replication Slots

Roles

_

_images/image_100.png
(DeliStore) postores@postres <
127.00.1:5432

e database: ds2

B PostaresaL 969
& & Databases 2)
8 S postgres
B a2
B & Schemas
5{& Extensions @)
& posal
- & potronu
E3-) Foreign Data Wrappers
B Tablespaces
Roles

- Replication Siots.

Memory Usage <

100
Y
[
I

010 | seconds x

System Memory Usage (Total: 7675MB)

- verory

20

ot
09:59:08

0959:16 095926 005927 0959:38 095049
Time

CPUUsage & O |10 seconds x
cPuUsage
[EF I I8 1y §
100
8
g
R
2 ———
el
095906 0wl 0910 095929 0wswdl 095952

Time

_images/image_153.png
6 Node 2 omnic_tess X

i

Activ omnid_tests

select * from public.bdrtest t
5 € PostgresaL 9.4.18 1

& & Databases (3)

B = postgres

B S bocsupenisordo

B = omnidb_tests.

& 2 Schemas (4

Q queryData

FH Editoata

[nsert Record
[Z Update Records
13 Count Records
X Delete Records:

& Tuncate Table

_images/image_101.png
_

Name: Type: Chart (Append) ¥ | Refresh Interval seconds.

Template:| Select Template v

Data Script: Chart Script:
1 1

_images/image_155.png
@ Node 1 -omnid tests X

i~ B

Active database: omnidb_tests

select * from public.bdrtest t

£ 6 PostgresqL9.4.18 tll

& & Databases (3)

B = postgres

B S bocsupenisordo

B2 omnidb_tests.
& 2 Schemas (4

B puic

Q queryData

> |ER Edtoata

[nsert Record
[Z Update Records
13 Count Records
X Delete Records:

& Tuncate Table

_images/image_154.png
1 SELECT t.id
&G PosigresaL 9.4.18 2 . t.username
3 . t.message
o °© 4 FROM public.bdrtest t
B8 posaes
62 barsupenisord

B = omnidb_tests.
& 2 Schemas (4
8 2 puic

Q quenyosta

F9 Editoata

[nsert Record
[Z Update Records
13 Count Records
X Delete Records:

& Tuncate Table

Number of records: 2
a & O e e /5018 101607 Ouestion 46939

_images/image_157.png
posigrsal 10331115 5432 posigres | posigres BT

_images/image_156.png
i

= omnid_tests

£ 6 PostgresqL9.4.18
B Databases (3)
B = postgres
B ba_supervisordd
B = omnidb_tests.
52 Schemas (1)
B puic

6 Node 2 omnic_tess X

SELECT t.id
. t.username

1
2
3 . t.message
4

FROM public.bdrtest t

Q queryData

> |ER edtoata

[# et Record

[# Update Records

1} Count Records.

X Delete Records

& Tuncate Table

Q @ [succommit © e

Number of records: 5
‘Star time: 11/14/2018 10:20:55 Duration: 47.932 ms.

_images/image_159.png
Table Name:

6 PosigesaL 9512 (Posigres XL 9.5116)
&2 Databases (1)
B postgres
& Schemas (9
o publc

Columns

23 Refresn
Create Table (GU)
[Create Table (Sa1)

@ vocigasics

@ Doc:Constras

@ oocvodiyng

B pg_catalog

E3-$ information_schema

52 storm_catalog
B & Extensions

E3- @) Foreign Data Wrappers
B33 Tablespaces.

B 282 Roles

first_table

Constraints | indexes

_images/image_158.png
posiges x

] postgres@postgres.

10.33.1.115:5432

igres
5 6t PostgreSQL 9,512 (Postares XL 9.51.6)
B & Databases
B Tablespaces

+ ane Type: datanode
- eue Host10331.116
e Port 5432
 aue Primary: false
- aue Prefered: alse
B 58 xcata2
B[Groups

_images/image_161.png
£ omNioa

postgres@postg
10.33.1.115:5432

6 PosigreSaL 3512 (Posigres XL9.511.6)
& & Databases (1)
B postgres

& 2 Schemas (4
8 2 puic

R frst table
&[0 coms @)
B primaryKey
B P Foreignkeys
& P Uiques
B[Checks

O @ Excludes
X inderes
5@ Rues

G Tiggers

£+ [Inherited Tables
& [Postgres XL

" wee Distributed by: hash (id)
ose Located nallnodes: True
28 Located innodes 2)

BB xdatat
2B ddata2
B 533 Foreign Tables:

B} Sequences

- €@ Views

_images/image_160.png
52 Gonsole] @ New Table +

Chan,

Table Name: | first_table

Golumas | constraints |Nindexes

Constraint

pkfistiable Primary Key

_images/image_152.png
5 € PostgresaL 9.4.18
& & Databases (3)
B postgres
B b supenvisords
5 omnidh_tests
& 2 Schemas (4
8 2 puic

- J9 primary Key
& P Foregnkeys
& 9 uniques
B[Checks
5@ Bludes
5K ndoes
[™
G Taggers

6 Node 2 omnic_tess X

1 select bdr.bdr_group_
2 local_node_name := 'n
3, node_external_dsn :
4, join_using_dsn

5 , node_local dsn := '
6

7

8

9

apply_delay := NU
replication_sets

_images/image_151.png
@ Node 1 -omnid tests X

10.33.4114:5432

E— T T 1o T

B G Postgresal 9418
B Databases (3)
B = postgres
B S bocsupenisordo
B2 omnidb_tests.
52 Schemas (1)

_images/image_094.png
Activity & O 15 seconds 2 rows.

1 1637 ds2 8037 10 posigres OmaDB 127001

2 637 ds2 803 10 postgres OmmDB 127001

« ——

_images/image_095.png
Q

Backends (max_connections: 100)

I postgres N ds2

_images/image_092.png
& (DeiStore) postores@postgres
1270015132

e database: ds2

& PostgresQL 9
[
& S Database

B postg| 22 Montorng

B ds2 | @ Doc:PostgresaL.
B2 @ poc: saL Lenguage
B &b
B QR

& B Tablespaces

@ Doc:SQL Commands.

Roles

- Replication Siots.

a2 Dashboard

= Backends

_images/image_093.png
Locks & O 15 seconds

x

123 4 .
M Exclusivelock [AccessShareLock
20
L
H o 6
g
L
o
o

Time

09:46:38

_images/image_144.png
postgresal | 10334114 5432 | omnidb_tests omnidd | Node1
postgresgl 10334115 5432 | omnidb_tests | omnidb Node2

_images/image_143.png
publictest table X

1 SELECT t.id

2 , t.name

3 FROM public.test_table t
4 ORDER BY t.id|

- Numberof records: 6.
= QA [om0 e GREETIE 3704 uaton: s 8520ms

ol alwle o
BN

_images/image_146.png
@ Node 1 -omnid tests X

p—
@ s |

- € PostgresQL9.4.18
B Databases (3)
B = postgres
B ba_supervisordd
B = omnidb_tests.
52 Schemas
B & Extensions

5 @ Foreign Data Wrappers
s{e=)
- one Version: 10620180621

Active: false.

Node name: Not set

o
imgoioE

- aee Poused: alse
Nodes.
5 Replication Sets
g Tablespaces

[

B g, Replication Siots

Roles

_images/image_145.png
6 Node 2 omnic_tess X

(Node
® 10.33.4.1155432 Create Extension

1 CREATE EXTENSION bdr
B PostoresaL9.4.18 2 --SCHEMA schema_name
e - 3 --VERSION VERSION
4 --FROM old_version
B S postgres 5

B S bocsupenisordo

[# Create Extension

Q@ [Auccommit © idie starttime: 11/08/2018 175154 Duration: 155.308 ms.

@ DocsBxensions

‘CREATE EXTENSION

_images/image_148.png
@ Node 1 -omnidests

10.33.4114:5432

@ (Mot 1) oo ests

& & PosigresaL 9.4.18
& & Databases (3)
B & postgres.
B S bocsupenisordo
B = omnidb_tests.
8 & Schemas
B & Extensions
5 @ Foreign Data Wrappers
s{e=)
- one Version: 10620180621

- eee Paused:false

_images/image_147.png
1 select bdr.bdr_group_create(
& PosigesaL 0418 2 local_node_name := 'nodel’
ce - 3, node_external dsn := 'host=18.33.4.114 port=5432 dbname=omnidb_tests user=omnidb password=omnidb’
Detabase 4, node_local dsn := 'host=127.8.8.1 port=5432 dbname=omnidb_tests user=omnidb password=omnidb'
B postgres 5 apply_delay := NULL
B2 bar_supenvisordd 6 --, replication_sets := ARRAY['default’]
B = omnido_tests :)
52 Schemas
B & Extensions
5 @ Foreign Data Wrappers
> = = Q a [Acommit © Notcomected
2 v L
s - T

[Join Growp
[Join Group wait

@ poceor

_images/image_150.png
6 Node 2 omnic_tess X

® 10.33.4.1155432 Join Group x

replication_sets := ARRAY['default']

B S omnids_tests
52 Schemas

& & Extensions

1 select bdr.bdr_group_join(
[———— 2 local_node_name := 'node2’
b o 3, node_external_dsn := 'host=10.33.4.115 port=5432 dbname=omnidb_tests user=omnidb password=omnidb’
Detabase 4, join_using_dsn := 'host=18.33.4.114 port=5432 dbname=omnidb_tests user=omnidb password=omnidb’
B postgres 5 , node_local_dsn := 'host=127.8.8.1 port=5432 dbname=omnidb_tests user=omnidb password=omnidb’
B2 bar_supenvisordd 6 --, apply_delay := NULL
7
8
9

5 @ Foreign Data Wrappers
= Numberofrecords: 1
s{e=) > == QA [om0 e SRR oo ouatonsor 7sams

- ee Version: 1.0.620180621-
Data
- ene Active:true

++ sse Node name: node2

- one Paused: alse

5 28 Notes 2)
- BB nodet
5 oz

B 4= Replicaion Sets
B Tablespaces

B g, Replication Siots

_images/image_149.png
6 Node 2 omnic_tess X

® 10.33.4.1155432 Join Group x

replication_sets

B = omnidb_tests. ARRAY[‘default’]
8 & Schemas

& & Extensions

1 select bdr.bdr_group_join(
B 6 PostgresaL 9418 2 local_node_name := 'node2’
b o 3, node_external_dsn := 'host=10.33.4.115 port=5432 dbname=omnidb_tests user=omnidb password=omnidb’
Detabase 4, join_using_dsn := 'host=18.33.4.114 port=5432 dbname=omnidb_tests user=omnidb password=omnidb’
B postgres 5 , node_local_dsn := 'host=127.8.8.1 port=5432 dbname=omnidb_tests user=omnidb password=omnidb’
B2 bar_supenvisordd 6 apply_delay := NULL
7
8
9

5 @ Foreign Data Wrappers

v
Wl

Q @ Amn-nmnonmmmm

_

[Join Growp
[Joi Group wait

@ poceor

_images/image_141.png
6 Node 2 omnic_tess X

[—
® 10.33.3.115:5432 publictest_table

1 SELECT t.id
2 . t.name
3 FROM public.test_table t
4 ORDER BY t.id

B @ PosigresaL 10.4
5 S Databases 2)
B2 posigres

52 omnids_tests

52 Schemas (1)
B puic

£ Refresh
B 553 ForeignTa|

Data Actions »

Q queryData

Table Actions > |ER edtoata

8]} Sequences =
B @ views

& @ Wateralzea iews [# et Record
g3 Functons & bt recorts
£ & TigoeFurcions 13 count Recorcs

&2 pg catslog :

ve . X Delete Racords

52 pologca & Truncate Table

B & Extensions
5 Foreign Data Wrappers
B 72; Logical Repication

Number of records: 6
Start time: 11/08/2018 15:34:50 Duration: 46,643 ms.

a @ [Atocommt © ide

_images/image_140.png
@ Node 1 -omnid tests X

(Node 1) omridb@omnicb_tests
har et B publictest table

select * from public.test_table t
1 order by t.id

& & PosigresaL 10.4

& & Databases 2)
B & postgres.

B = omnidb_tests.

& 2 Schemas (4
8 2 puic

55§ Foreign T

B3 Sequences Q querybata

B @ Views Table Actions > |ER Edtoata

B @ Materiaized Views | [Z insert Record

5 €8 Functions T
£ g8 Trigger Functions

6 2 po.catsog
82 information_schema
-2 poogca

B & Extensions

1} Count Records.

X Delete Records

& Tuncate Table

5 Foreign Data Wrappers

S :
T T ... |

FIEIIF P
x| x| x| % x x

_images/image_142.png
BB publictest table

select * from public.test_table t
1 order by t.id

0107 s [

FIEIIF P

_images/image_173.png
& postgres@postg

5 6t PostgreSQL 9,512 (Postares XL 9.51.6)
& Databases 1)
B = postgres.
& 2 Schemas (4)
& pubic
S Tables

B 533 Foreign Tables:

]} Sequences
B @ views
O @ Materiaized Views
B g Functons
- 8 Trgger Functions
B2 pg catalog
6 information_schema
82 storm_catalog
B & Exensions
- @ Foreign Data Wrappers
g Toblespaces

[Execute irect
[PoolReload
[Aternode

X Drop Node

_m-

1 EXECUTE DIRECT ON (xldata2)
2 'SELECT * FROM second_table’
3

Nomber of records: 5
> a e O e e 1475018152250 Dt 2696 ms

[TeTe T
==

e John
2 2 Paul
ElE Ringo
4 4 ceomge
5 5 v

_images/image_175.png
Detsior) postresapostres
® 127.0.0.1:5432 O Backends X
[o] ot s

12713 10 postgres OmniDB

Number of records: 1

& Posigsal s3] -
e =
5 Databases (2)
E) 16387

B Tablespaces

34402 201811-02092208.578685-.. 2018110209220

5 5% Rokes
3 72, Replication Slots.

_images/image_174.png
(Delistore) postares@postgres
& Query. DBackends

Namer ofrecors: 1

{8 PostaresaL o -)
5 = Databases|

B Tablespace
o ssipoes | @ DocPostoresaL

Refresh

I) ey e e e

|2 Moritoring > | Lo Doshbosrd 12719 10 postgres OmniDg 127001 402 201811:02092208 578685-.. 201811020922

= Backends

#= Replication

Repication @) Do St Langusge

@ Doc:SaL Commands

_images/image_177.png
(DelStore) postores@postgres ‘
12700.1:5432 I

categories| .

3

oL

Type: TABLE ; Name: categories; Owner: ds2

category integer NOT NULL,
categorynane character varying(58) NOT NULL

1
2
3
4
5 CREATE TABLE categories (
6
7
8);

9

11 ALTER TABLE public.categories ALTER category SET DEFAULT next

13 ALTER TABLE categories ADD CONSTRAINT categories_pkey
14 PRIMARY KEY (category);

16 ALTER TABLE categories ONNER TO ds2;

18 GRANT DELETE ON public.categories TO web;

19 GRANT TRUNCATE ON public.categories TO web;
20 GRANT INSERT ON public.categories TO web;

21 GRANT REFERENCES ON public.categories TO web;
22 GRANT SELECT ON public.categories TO web;

23 GRANT UPDATE ON public.categories TO web;

24 GRANT TRIGGER ON public.categories TO web;

_images/image_176.png
(Delstore) postares@postgres
® 127.0.0.1:5432 v

= = Sonemas)
8 2 pwic I
B 532 Tables ()
3 {E categories|

_

Dmnue as2
Schema public

Table categories

oo 16434

Owner. as2

size 8192 bytes

Tablespace pa_default

AcL {ds2=arwdDxt/ds2web=arwdDxt/ds2)
Options

Filenode base/16387/16434

Estimate Count 16

Has Index true

Persistence Permanent

Number of Atiibutes 2

Number of Checks [

Has 0IDs false

Has Primary Key true

Has Rules. false

Has Trioers false

_images/image_179.png
} omniDa

(DeliStore) postores@postres <
127.00.1:5432

database: postgres

5 & Postgresal

admin & & @ @

\dv

\ds

\d
DESCRIBE
describe
\di

\dm

\df

\timing

Syntax

\?
\h
\list

\1[+] [pattern]

\du[+]
\dx[+]
\db[+]
\dn[+]
\dt[+]
\dv[+]
\ds[+]

[pattern]
[pattern]
[pattern]
[pattern]
[pattern]
[pattern]
[pattern]

\d[+] [pattern]

DESCRIBE [pattern]
DESCRIBE [pattern]

\di[+]
\dn[+]
\df[+]

[pattern]
[pattern]
[pattern]

\sf[+] FUNCNAME

\dT[+]
\x
\timing

[pattern]

Description

Show
Show
List
List
List
List
List
List
List
List
List
List

Commands .

SQL syntax and help.

databases.
databases.
roles.
extensions.

tablespaces.

schemas .
tables.
views.
sequences.
or describe

Describe tables,
Describe tables,

List

List materialized views.

List

Show a function's definition.

List

Toggle expanded output.
Toggle timing of commands.

indexes.
functions.

data types.

tables, views and sequences.
views and sequences.
views and sequences.

“

Autocommit © idie

‘Star time: 11/08/2018 07:45:09 Duration: 14.182 ms,

_images/image_178.png
_

1 select *
2 from public.categories

File Edit View Insert Format Sheet Data Jools Window Help
H-O-B-08R X 8- -
catbri v[[v vIB Z UL »

a1 V| £ T = | category

5 < o
dcategory [categoryname @ I
> Q@ [Auocommit © Notconnected Starttime: 11/02/2018 08:28:44 Duration- 18.06 ms 2 1/Action xsx v| B
; 3 2 Animation T
The file is ready. Save > 4{Cassics

s 5 Comedy ®
7 6 Documentary
s 7Drama fu
B 8 Family

0 9 Foreign

" 10 Games

2 11 Horror

3 12 Music

T 13New

s 14/5ci-Fi

6 15 Sports

7 16 Travel
i <> n + | Sheet |

_images/image_181.png
o ! pEREE Ty moE e E R aEsseEE paEEE

| \timing | \timing Toggle timing of commands.

N H
\df	\df[+] [pattern]	List functions.
\sf	\sf[+] FUNCNAME	Show a function's definition.
\dT	\dT[+] [pattern]	List data types.
\x	\x	Toggle expanded output.
I		

+

© 20181108095020 \n creae index
© 81108094909 V2
© wiemovasa 12

ON table_name [USING method]
5s] [ASC | DESC] [NULLS { FIRST | LAST } 1 [, ...])

Autocommit © Idle Starttime: 11/08/2018 07:50:20 Duration: 0.366 ms

_images/image_180.png
admn & & © @

} omnNiDa

postares \dt \dt[+] [pattern] List tables. -
5 Postgresal \dv \dv[+] [pattern] List views.
\ds \ds[+] [pattern] List sequences.
\d \d[+] [pattern] List or describe tables, views and sequences.
DESCRIBE | DESCRIBE [pattern] | Describe tables, views and sequences.
describe | DESCRIBE [pattern] | Describe tables, views and sequences.

I | | I
I | | I
I | | I
I | | I
I | | I
I | | I
| \di | \di[+] [pattern] | List indexes. I
I | | I
I | | I
I | | I
I | | I
I | | I

| I
+

\dm \dm[+] [pattern] List materialized views.
\df \df[+] [pattern] List functions.
\sf \sf[+] FUNCNAME Show a function's definition.
\dT \dT[+] [pattern] List data types.
\x \x Toggle expanded output.
| \timing | \timing Toggle timing of commands.
e —
>> \h create index
Description
CREATE INDEX constructs an index on the specified column(s)
Syntax:

CREATE [UNIQUE] INDEX [CONCURRENTLY] [[IF NOT EXISTS] name] ON table_name [USING method]
({ column_name | (expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS { FIRST | LAST } 1 [, ...])

_ [WITH (storage_parameter = value [, ... 1)]
[TABLESPACE tablespace_name]
Value [WHERE predicate]

Autocommit © Idle Starttime: 11/08/2018 07:50:20 Duration: 0.366 ms

‘

_images/image_182.png
_

>> Console tab. Type the commands in the editor below this box. \? to view command list. -
>> \dt

SELECT 0

>> \d+ categories

+

| Column | Type | Modifiers | Storage | Stats target | Description

+

| category | integer | not null defeult nextval(’categories_category_seq'::regclass) | plain | None | None

| categoryname | character varying(50) | not null | extended | None | None

"categories_pkey" PRIMARY KEY, btree (category)
Has 0IDs: no »

>> \timing
Timing is on.
>> select *
from categories
o -

category | categoryname

+
I |

+ +

11 | Action |

12 | Animation |

|3 | Children |

|4 | Classics |

15 | Comedy | .
‘

Autocommit © Idle Starttime: 11/08/2018 075444 Duration: 8.663 ms

_images/image_164.png
postgres@postg
R o Exncuis Duscti >0

1 EXECUTE DIRECT ON (xldatal)
2 'SELECT * FROM first_table’
3

5 € PostoreSQL 9.5.12 (Postgres XL 9.511.6)
& & Databases (1)
B postgres
52 Schemas (4
B & Exensions

E3- @) Foreign Data Wrappers
B33 Tablespaces.

Number o records: 3
CagaaQ O e e /50181519412 st 526053

_
T o
2 2 e

[# ExecuteDirect oG o

[# PoolReond

[# Aterode

X Drop Node

_images/image_163.png
posigres@posty
® 10.33.1.115:5432 public.first_table

B PostgreSQL 9.5.12 (Postgres XL 9.571.6)

& Databases 1)

B postgres
52 Schemas (1)

1
2
3
4

SELECT t.id

. t.name

FROM public.first_table t
ORDER BY t.id

Q, Query bata
F9 Editoata

[nsert Record
13 Count Records

& Tuncate Table

0

[# Update Records

X Delete Records

Number of ecords: 5
a e O e e /3018151228 Oueston 59519

_images/image_166.png
postgres@postgres
T05311755432

& & Databases (1)

B = postgres.
& 2 Schemas (4

- € PostgresaL 9,512 (Posigres XL 9.51.6)

2 Retresh

Create Table (GU)
[Create Table (Sa1)

@ vocigasics

@ Doc:Constras

@ oocvoding

Table Name:

Columns

second_table

Constraints | Indexes.

_images/image_165.png
postgres@postg
10.33.1.115:5432

1

EXECUTE DIRECT ON (x1ldata2)

& & PostgreSQL 9.5.12 (Postgres XL 9.5r1.6) 2 'SELECT * FROM first_table’
B = Databases (1) 2
B2 postgres
52 schemas ()

& & Extensions
E3- @) Foreign Data Wrappers
B33 Tablespaces.

Number o records: 2
a e O e e /3018152050 Durston 529943

[# eate Diect

[# PoolReond

[# Aterode

_images/image_168.png
£ omNioa

postgres@postg
10.33.1.115:5432

postgres

5 € PostoreSQL 9.5.12 (Postgres XL 9.511.6)
& & Databases (1)
B postgres
& 2 Schemas (4
& & puvic
LS
& [frsttable
& [0 second.table
&[0 coms @)
B primaryKey
B P Foreignkeys
& P Uiques
O checks
O @ Excludes
X inderes
9 Rues
G Tiggers
- nherted Tables
& [Postgres XL
one Located nall nodes: True
28 Located innodes 2)
BB datan
BB dats2
553 Foreign Tables
]} Sequences
B @ views
O @ Materiaized Views

_images/image_167.png
52 Console] @ New Table. .

Table Name: | second_table

Columns | constraints |Nndexes

plcsecond_table PrimaryKey [T name

_images/image_170.png
yomNiDa Co

] postgres@postgres.

10.33.1.115:5432

5 6t PostgreSQL 9,512 (Postares XL 9.51.6)
& Databases 1)

B postgres

& 2 Schemas (4
& & puvic

Taties ()

& [frsttable

& [0 second.table
&[0 coms @)
B primaryKey
B P Foreignkeys
& P Uiques
O checks
O @ Excludes
X inderes
9 Rues
G Tiggers
- nherted Tables

one Located nall nodes: True
28 Located innodes 2)

B et
BB wdata2

B3 53 Foreign Tables

B} Sequences

B @ Views

& @ Wateralized Views

_images/image_169.png
postgres@postg
10.33.1.115:5432 Alter Table Distrbution X

ED ALTER TABLE public.second_table DISTRIBUTE BY
2 REPLICATION

ROUNDROBIN

HASH (column_name)

5 --MODULO (column_name)

6 PosigreSaL 3512 (Posigres XL9.511.6)
& & Databases (1)
B postgres
& 2 Schemas (4
& & puvic

_images/image_172.png
5 € PostoreSQL 9.5.12 (Postgres XL 9.511.6)
& & Databases (1)
B postgres
& 2 Schemas (4
2 public
553 Tables

553 Foreign Tables
]} Sequences
B @ views
O @ Materiaized Views
B g Functons
- 8 Trgger Functions
B2 pg catalog
6 information_schema
82 storm_catalog
B & Exensions
- @ Foreign Data Wrappers

g Tablespaces

[Execute irect
[PoolReload
[Aternode

X Drop Node

m

1 EXECUTE DIRECT ON (xldatal)
2 'SELECT * FROM second_table’
3

Nomber of records: 5
> a e O e e 13 14/5018 152200 Dt 52984 ms

[Te-Te
==

i1 dom
2 2 Pl

3 3 mingo
4 4 ceomge
5 5 v

_images/image_171.png
posigres@posty
® 10.33.1.115:5432 BB public.second_table

postgres select * from public.second_table t
1 order by t.name

6 PosigreSaL 3512 (Posigres XL9.511.6)
& & Databases (1)

B postgres
& 2 Schemas (4

Q quenyosta

FH Editoata

[# st Record

[# Update Records

1} Count Records.
X Delete Records.

& Tuncate Table

Glee[e=

& @ Wateralized Views

_images/image_162.png
postgres@postg
R o B

select * from public.first_table t
1 order by t.id

B G0 PostgreSQL 9512 (Postgres XL 9.571.6)
& Databases 1)

B2 postgres

52 Schemas (1)

Q, Query bata
9 Edtata

[sertRecord
[Update Records
13 Count Records
X Delete Records

& Tuncate Table

-) Inherted Tables | |

- [0 Postgres XL

 ens Distributed by: hash (d)

ese Located inallnodes: Tue:
28 Located innodes 2)
BB datan

data2.

_images/image_051.png
Query

1 SELECT
2 FROM customers ¢
3 WHERE
templatet 5
testeb
villamivansi
po.signalbackend
po.stat_scan_tables
T6resuits postgres -
=
Tablespaces Po-default
Data | Messag e po-siobal -
2results
Schemas _ information_schama
& rocaulog
e Pl
3results

Extensions PIPosal

1 results

Keywords | ABORT || ABS || ABSOLUTE || ACCESS || ACTION
A ADA || ADD || ADMIN || AFTER || AGGREGATE || ALIAS

S28resuts || ALL||ALLOCATE | ALTER || ANALYSE | ANALYZE

_images/image_052.png
Quey x

1 SELECT
2 FROM public.

public.addresses
public.customers

public.add_pk adresses
public.cust_pk customers

_images/image_049.png
auen " x

v B

11 12

10

@ [Autocommit © ot connected

Mo
[)]
"> M

1314 15

_images/image_050.png
Quey x

1 SELECT
2 FROM customers c
3 WHERE c. aus

Columns Ceustid in4
m coustname varchar
coustage inta

3resuts .

Q @ [Auocommit © Notcomected

_images/image_056.png
Quey x

1 select *

2 from (

3 select cust_name,

4 (select count (%)

5 from addresses addr

6 where addr.cust_id = cust.cust_id) as num_addresses
7 from customers cust

8) subquery

9 where subquery.cust_name = 'Rafaell
14 Q @ [Auocommit © ide Starttime:11/01/2018 150249 Duraion: 14903 ms

Explain
Eeraaq

[O—— . 0 1 Y —
prems =

_images/image_057.png
Quey x

144 GROUP BY 1,2,3,4,5

145) AS foo

146) AS rs

147 ON ce.relname = rs.relname
148 AND nn.nspname = rs.nspname
149 LEFT JOIN pg_index i

150 ON indrelid = cc.oid
151 LEFT JOIN pg_class c2

152 ON c2.01d = i.indexrelid

153) As sml;|
» = Q@ [Auocommit © ide Starttime:11/01/2018 150500 Duration: 261.152 ms

Explain

Index Scan using pg_namespace_nspname_index on pg_namespace nn

Seq Scan on pg_class c2

Seq Sean on pg_index i
MaterialHash Right Join S -
Result

TnitPlan 1 (retumns $0)

Merge Left Join Seq Scan on pg_attribute att

Seq scan on . las 5
Seq'Scanon . namespace ns
SeqScanon . atnbute .
Seq Scan on . statstc .1
Seqscanon . class o

Index Scan using pg_namespace_oid_index on pg_namespace n

Index Scan using pg_class.relname_nsp_index o pg_class c._1

Index Scan using pg_attrbute.reid_attnum_index on pg_attrbute a_1

‘Seq Scan on pg_namespace n_1

_images/image_054.png
select *
from (
select cust_name,
(select count(#)
from addresses addr
where addr.cust_id = cust.cust_id) as num_addresses
from customers cust
) subquery
where subquery.cust_name = ‘Rafae:

Voo s e

a @ Mlnwl'm © idie Starttime: 11/01/2018 15:02:24 Duration: 8.899 ms.

_4 sz

2 Fiter (cust_name) Rafael®

text

3 SubPlant
4 © Aggregate (cost=12.13..12.14 rows=1 width=g)

_!ﬁ-:adﬂr (€05=0.00..12.12 rows=1 width=0)

Fiter: (cust_id = cust.cust_id)

_images/image_055.png
select *
from (
select cust_name,
(select count(#)
from addresses addr
where addr.cust_id = cust.cust_id) as num_addresses
from customers cust
) subquery
where subquery.cust_name = 'Rafaell

Voo s e

a @ ~/ Aunmmm © e Starttime: 11/01/2018 15:02:49 Duration: 14.903 ms.

ERNY
0

, _‘ s

Fiter: ((cust_name):

630 rows=1 loops=1)

Rows Removed by Filter:
SubPlan 1

|10 Aggiegaie (€65E513 .13. 12,14 rows=1 width=s) (actual tine=0.011..0.012 rows=1 loops=1)
|1 SeqScanonaddtecses adr (cost=0.00..12.12 rows=1 width=d) (actual. tine=0.006..0.005 row

Fiter: (cust_id = cust.cust_id)

Toops=1)

Rows Removed by Filter: 7

Planning tine: 0.155 m
10 Execution tine: 0.670 ms

_images/image_058.png
= sippets | @ 21205 | @ ocisioe-os2 x

 (Oc1Store) postresaposises IT_
l
B PostaresaL 969
B-& Databases (2)
8 S postgres
B a2
B2 Schemas (3)
B(g o

b Render Graph > | % smpleGraph

% Complete Graph

B2 inf
B & Extensiof X Drop Schema a @ Auto
E3-) Foreign Data Wrappers
Data Expa

B Tablespaces
B 382 Roles (4)

_images/image_112.png
_

Name:| Size: Top 20 Tables e Chart (Append) v/ Refresh ntent| 15 seconds
Template:| (Chart (Append)) Size: Top 5 Tables .
Data Script Chert serpt:
1 from datetime import datetime 211 result = { -
2 from random import randint 2 "type’: "line",
3 3 "data”: None,
4 tables = connection.Query(""’ 4~ “options”: {
5 SELECT nspname || . || relname AS relation, 5 “responsive”: True,
6 round(pg_relation_size(c.0id)/1048576.8,2) AS size 6 “title":{
7 FROM pg_class c 7 "display” :True,
8 LEFT JOIN pg_namespace n ON (n.oid = c.relnamespace) 8 “text":"Size: Top 20 Tables"
9 WHERE nspname NOT IN ('pg_catalog’, ‘information_schema') 9
10 AND c.relkind <> ‘i’ L] e tooltips": {
1 » 1 “mode”: *index", <
-]

Size: Top 20 Tables

[pubic procucts [omnidb statistics [omnidb contexts
I pubic customers [pubiic categories N public.orders
I omnich.varizbles I publc customers_customerid_seq

pubiic.orders_orderid_seq I public.products_prod_id_seq
pubic.orderines N public.categories_category_seq
I pubic seq_test [N public.cust_hist [N public.inventory
I pubic reorder

0.8
10:14:35

Size (MB)

_images/image_059.png
catabase: ds2

B 6 PostoresqL 969

5 Databases 2)

B postgres

B 2
52 schemas (3)

(S

52 pg catalog

E5- 2 information_schema

B & Extensions

£ Foreign Data Wrappers

B Tablespaces

orderlnes

customers
Jorders categories

588 Rokes ()

22, Repiiation Siats cust st

properties | BB

ventory products reorder

_images/image_115.png
g

0RA-01005: null password given; logon denied

_images/image_113.png
4 Monitoring X

Size:Top20Tables & © 15 | seconds x Tablesze & O [5 seconds
Size: Top 20 Tables Table Size (Total: 0.17)
I pubic products N omidbsiatistcs [omnidb.contexts o categories reorder NN cust_hist [customers
I pubic customers N pubic categories [N pubicorders J orders N orderines [invertory N products
I omrido variables [N pubic customers_customerid_seq
N pubic orders_orderid_seq I pubic products_prod id_seq
| pubic.orderiines I public categories_category_seq /

I puoic seq_test [N public.cust_hist [N public.inventory

g I pubic.reorder

5 ooe

8 w

RandomNumber & © | 3 seconds 1rows X MemoryUsage & O |10 seconds

[ot | st emoryUsage (ol T6754)

1 osissiassstees
- verory
100

EY
60
40

2,0 8

_images/image_117.png
10332114 5432 omnidb_tests omnidb Nodel [22 xX¥Q
10332115 5432 omnidb_tests omnidb Node2 [22 xX¥Q

_images/image_116.png

_images/image_107.png
Name: Type:| Chart (No Append) ¥ | Refresh iterval| 30 seconds
Template:| (Char) Database Size v
Data Script Chert serpt:
23+ result </ [1 total_size = connection.ExecuteScalar('" " -
2 "Tabels": label, 2 SELECT round(sun(pg_catalog.pg_database_size(datname)/1848576.(
25+ "datasets’: [3 FROM pg_catalog.pg_database
2+ R 4 WHERE NOT datistemplate
27 "data”: data, 5)
28 "backgroundColor": color, 6
29 “label": 'Dataset 1" 7-result = {
s) 3 “type': "pie’,
2 1 9 "data”: None,
2) J1 18- options’: { .
‘ » T
-]

Database Size (Total: 14.80 MB)

M categories W reorder NN cust_hist N customers
I orders [N orderiines [N inventory [N products

P
/A

_images/image_106.png
_

Name: Type: Chart (No Append) ¥ | Refresh interval| 30 seconds
Template,| (Char) Database Size .
Data Script Chert serpt:
1 from datetime import datetime 21 [1 total_size = connection.ExecuteScalar('" " -
2 from random import randint 2 SELECT round(sum(pg_catalog.pg_database_size(datname)/1048576.(
3 3 FROM pg_catalog.pg_database
4 databases = connection.Query('"" 4 WHERE NOT datistemplate
5 SELECT d.datnane AS datname, 5)
6 round(pg_catalog. pg_database_size(d.datname)/1048576.0, : 6
7 FROM pg_catalog.pg_database d 7+ result = {
8 WHERE d.datname not in ('templated’,’templatel’) 8 "type': "pie”,
9) 9 "data”: None,
[.| 18- “options": { .
1 > T — >

_images/image_109.png
Monitor Unit X

Name:| Table Size Type:| Chart (No Append) ¥ | Refresh inerva: seconds
Template:| (Char) Database Size N
Dota Script Chart Serpt:
23~ result = . 1 "type": "pie",
24 "labels": label, 12 "data”: None,
25- ‘"datasets”: [13- “options”: {
26 { 14 "responsive”: True,
27 "data": data, 15~ "title":{
28 . "display” :True,
29 "text":'Table Size (Total: * + str(total size) + *
30 }
31 1
2)
‘
y 8

Table Size (Total: 0.17)

I categories NN reorder NN cust_hist W customers
I orders NN orderiines [N inventory [N products

P
A

_images/image_108.png
Name: Type:| Chart (No Append) ¥ Refresh interva| 30 seconds
Template:| (Char) Database Size .
Data Script Chart serpt:
- w -

23~ result 1 "type’: "pie”,

24 "labels": 12 "data”: None,

25 “datasets”: [13- “options”: {

26 { 14 “responsive”: True,

27 “data”: data, 15~ “title":{

28 “backgroundColor” : color, 16 "display” :True,

29 “label": 'Dataset 1" 17 “text":'Table Size (Total: * + str(total_size) + *)"

30) 18)

31 1 19)

2) v 20y S

‘ » S
(-]
Table Size (Total: 0.17)

I categories NN reorder N cust_hist N customers
[orcers NN orderines [N inventory N products

P
A

_images/image_111.png
_

Name: Type Chart(Append) v Refresh interval| 15 seconds
Template,| (Chart (Append)) Size: Top 5 Tables v
Data Script Chert serpt:
1 from datetime import datetime <1 [result = { -
2 from random import randint 2 "type’: "line",
3 3 "data”: None,
4 tables = connection.Query(''’ 4~ voptions”: {
5 SELECT nspname || . || relname AS relation, 5 “responsive”: True,
6 round(pg_relation_size(c.0id)/1848576.8,2) AS size 6 "title":{
7 FROM pg_class c 7 "display” :True,
8 LEFT JOIN pg_namespace n ON (n.oid = c.relnamespace) 8 “text":"Size: Top 5 Tables"
9 WHERE nspname NOT IN ('pg_catalog’, ‘information_schema') 9 }
10 AND c.relkind <> L] e tooltips
T n "mode’ A

Yy 8

_images/image_110.png
4 Monitoring X

Tablesize & O |5 seconds x Random Number & © 3 seconds 1rows.

— T

1 057640914991498
I categories W reorder N cust_hist NN customers
[orders [N orderiines [inventory (S products

2
d

Memory Usage & O | 10 seconds x CPUUsage & O 10 seconds
System Memory Usage (Total: 7675MB) CPU Usage
- Vemory [TR IF I
100 100
80 80
0 3 60
o)

20 20 A 6
$ 2

L ® A P ® D »

_images/image_006.png
New

e

=

wer2

_images/image_007.png
admin & & @ @ Signout

N

-

=

=

_images/image_004.png
} omnNiDa

Create your first

connection!

OMNIDB

v2.12.0

RELEASE NOTES

= New modem look & feel on the entire web interface, components and icons

L PostgreSQL: OmniDB now uses PostreSQL server-side cursors whenever
possible to always keep low OmniDB memory usage

L PostgreSQL: User now can enable/disable autocommit

L PostgreSQL: Status of the backend is shown to the user

L PostgreSQL: If autocommit is disabled or user starts a transaction, user can cither
‘COMMIT or ROLLBACK

L PostgreSQL: New full-featured autocomplete component for PosigreSQL

| PostgreSQL: Support to HASH partitions (SQL templates, treeview, properties
and DDL)

L PostgreSQL: Improved SELECT template for views and materialized views

L New User optionsto set CSV encoding and delimiter

L savetitle of Query Tabs

_images/image_005.png
N

= e

r

_images/image_008.png
OMNIDB

w120

-| test

_images/image_063.png
} omnioa

suppets | @ 2120 x

(DeliStore) postores@postres <
127.00.1:5432

Active da

B2 posgres

B a2
52 schemas (3)

52 e
Tables

Foreign Tables
{13 Sequences ()
14 categories_category_seq

13 customers_customerid_seq

13 orders_orderid_seq
13 products_prod.ia_seq
O @ Views
E3- @) Materialized Views

Quey x

1 EREATE SEQUENCE M

2 --INCREMENT BY i

3 --MINVALUE minvalue | NO MINVALUE

4 --MAXVALUE maxvalue | NO MAXVALUE

5 --START WITH start

6 --CACHE cache

7 --CYCLE

8 --ONNED BY { table_name.column_name | NONE }

Create Sequence

> Q @ [Adtocommit © Notconnected

Data | Messages | Expl

_images/image_064.png
} omniDa

= snippets | @ 2120 x

(DeliStore) postores@postres <
127.00.1:5432

Active da
B2 posgres
B a2

52 schemas (3)

52 e
(3 Tables.

Quey % | creste sequence

CREATE SEQUENCE public.seq_test
INCREMENT BY 2

--MINVALUE minvalue | NO MINVALUE

~-MAXVALUE maxvalue | NO MAXVALUE

~-START WITH start|

CACHE cache

--CYCLE

--OWNED BY { table_name.column_name | NONE }

R RPN

5 Foreon Tobles

B 13 Sequences ()

1% categories_category_seq

& customers_customerd_seq

> Q @ [Adtocommit © idie Start time: 11/02/201
orders_orderid_seq

Data | Messages | Expl

1% products_prod.id_seq
(13 seqtest ‘CREATE SEQUENCE

B @ Materiokized Views.

_images/image_061.png
% punic x

(DeliStore) postores@postres <
127.00.1:5432

database: ds2

B 6 PostgresaL 969
5 Databases 2)

orderlines

orderlineid : smallint

orderid : integer

B S postgres prod_id : integer

BS @ quantity : smallint
orderdate : date

52 Schemas (3) .

(S
5 py cataog

E5- 2 information_schema

B & Extensions

E3-) Foreign Data Wrappers \
B Tablespaces

384 Roles (4)
orders
orderid : integer
orderdate : date
customerid - integer
netamount : numeric
\ tax : numeric

totalamount : numeric
properties | BB

B3 42, Replication Slots

public
postgres.

{postgres=UC/postares =UC/postaresve.

customers
\ customerid : integer

firstname : character varying

lastname : character varvina

_images/image_062.png
(DeliStore) postgres@postgres
| sctessassesz [N

B2 posgres =
B a2
52 schemas (3)

52 e
[252 Tables

Foreion Tables
{13 Sequence

{15 seauencel pfean
O @ Views
& @ Materiaiz
B g Functins| @) D0 Seauences

£ g8 Trigger Functions B | e || B
5 pa cataog
-2 information_schema
B & Extensions
B3 @) Foreign Data Wrappers

[# Creste Sequence.

_images/image_002.png
& omnibe x|+

c @ ® 127.0.0.1:8000 -9 Lo @

_images/image_067.png
} omnioa

Quey % | 0rop sequence

1 DROP SEQUENCE pm
emas (3) 2 --CASCADE

B2 puic 3
553 Tables

B3 5§ Foreign Tables
B 13 Sequences ()
13 categories_category_sea
R

13 orders_orderid_seq

customers_customerid_seq

13 products_prod it seq

> Q @ [Adtocommit © Notconnected

B @ views Deta | Messages | Explain
O @ Materiaized Views
B g Functons

R

_images/image_003.png
e OMNIDB

w120

admin

_images/image_068.png
sortcuts | UserOptions |l Passord

Editor
‘Shorteuts active inall eftors. They wil override any user defined shortcut, See st here.

Query/Console Tab.

Run Query

Cancel Query

Indent AltsD

Autocomplete Ctri+SPACE

Explain (PostgresaL) Alt+A

Explain Analyze (PostgresaL) Altss

Previous Command (Console Tab) Clri+ARRO\

Next Command (Console Tab) Clri+ARROWDOWN

_images/image_065.png
= Schemas 9)
52 e

55 Tables

52 Foreign Tables

B 13 Sequences ()
13 categories_category_sea
R

13 orders_orgerid_seq

customers_customerid_seq

1% products_prod.id_seq

s

[AterSequence
£ @ Mot X D9 Sequene

B g8 Trigger Functions
52 pg catalog >

_images/image_001.png
@ 2120 %

e OMNIDB
o=/ 2120

RELEASE NOTES

= New modem look & feel on the entire web interface, components and icons

L PostgreSQL: OmniDB now uses PostgreSQL server-side cursors whenever
possible to always keep low OmniDB memory usage

L PostgreSQL: User now can enable/disable autocommit
L PostgreSQL: Status of the backend is shown to the user

L PostgreSQL: If autocommit is disabled or user starts a transaction, user can cither
‘COMMIT or ROLLBACK

_images/image_066.png
Quey x| ater sequence

1 ALTER SEQUENCE
S S sohemas (9 2 --INCREMENT BY!
52 public 3 --MINVALUE minvalue | NO MINVALUE
& 533 Tables 4 --MAXVALUE maxvalue | NO MAXVALUE
5 oo Tae 5 --START WITH start
= 6 --RESTART
13 sequences (5) 7 --RESTART WITH restart
13 categories_category_seq 8 --CACHE cache
4 customers_customerid_seq 2 --CYCLE
10 --NO CYCLE
orders orderid seq § unED_ o 81 2 L noue
[peelisn > Q@ [Auocommit © Notcomected

Data | Messages | Expl

5 @ Materialized Views
5 €8 Functions
E5- 8 Trigger Functions

_images/image_069.png
all admin & & © @ Signout

Quey % DropSequence X+

1 SEQUENCE public.seq_test
2 --CASCADE
3
(Dark) OmniDB Dark
> = Q @ v/ Autocommit © Notconneoted

Data Messages Explain

_images/image_103.png
m

Name: Type| Grid v | Refresh inerval:| 15 seconds
Template:| (Grid) Activity v
Data scrpt: Chart Script:
1 from datetime import datetime 1
2

3 data = connection.Query(’
SELECT random() as "Random Number"
e

"columns”: data.Columns,
"data”: data.Rows

T oatonsaassiosss

_images/image_102.png
_

Name: e, Grid v Refresh mervat| 15 seconds
Template| (Gric) Activity .
Data Script Chert Serpt:
1 from datetime import datetime 2] [
2
3 data = connection.Query(' "’
4 SELECT *
5 FROM pg_stat_activity
6)
7
8- result = {
9 "columns”: data.Columns,
10 "data’: data.Rows
1oy <

_images/image_105.png
3| seconas trows X MemoryUsage & O [10 | seconss
[| Systom Momory Usage (Tt 76758)
1 o12ssss002554549
—emory
100
w0
L ®
©
»
¢ 4 5 5 o ¢ 5 5 &
FF PSS ITFFSFF
FIES TS FS
Time
CPUUsage & O |10 seconds x

CPU Usage

[EF I I8 Iy |
100

0
3 60
3w

m A

_images/image_104.png
__

Neme: | Random Nurmber e Grid v | Refresh inerval:| 3 seconds
Template:| (Grid) Activity M
Data Script: Ghart Script:
1 from datetime import datetime 1
2

3 data = connection.Query
SELECT randon() as "Random Number"

1 0310025388840586

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/image_060.png
(oetstore) postresarosires
® 127.0.0.1:5432 v Query
TR |

B PostaresaL 969
& & Databases 2)
B postgres

B a2
52 Schemas (3)
LHETTR

b Simple Graph
b Complete Graph

O & Extensig X Drop Schema a a [Atcommit © N

- @ Foreign Data Wrappers
B Tablespaces
58 Roles ()

B3 42, Replication Slots

Data | Messages | Expl

_images/image_075.png
) omnioa

suppets | @ 2120 x
(Delstore) postres@postores S
1270015132

Active database:

Foreign Tables

13 sequences
© Views
© Materalized Views
£ Functons (7)
B €8 browse.by_actor

1 browse_by_category

B browse.by.tite

(g8 e_count_vowels|
) retums integer
L€ pmttet

S g togin

B8 new_customer

- 8 purchase

B3 g Trigger Functions o

ET——

Database as2
Schema public

Function fnc_count_vowels

15
16
17
18
19
20
21
22
23
24

Le = renguIp_Iput),

WHILE i <= len LOOP
IF substr(str, 1, 1) in (A’ "U) THEN
SELECT pg_sleep(1) INTO tmp;
ret :=ret + 1;
END IF;
i it
END LOOP;
RETURN ret;
END;
$functions|

3

Data

Q@ [Auocommit © idie Starttime: 11/03/2018 06:26:02 Duration: 21.899 ms.

Messages | Explain

CREATE FUNCTION

_images/image_076.png
(DeliStore) postores@postres <
127.00.1:5432

dat 2

3

B3 Sequences

O @ Views

O @ Materiaized Views
S Functons (7)

6 browse_by_actor

52 Foreign Tables

- g3 browse.by._category

B browse by tte

{2y e comvomery

> retums integer

& pmuttert

S g togin

B8 new_customer

- ™ nurchase

1 SELECT public.fnc_count_vowels['The quick brown fox jumps over the lazy dog.')|

Number of resords: 1
Start time: 11]03/2018 06:27:27 Duration: 00:00:11

_

a a [docommit © ide

_images/image_073.png
B3 5§ Foreign Tables

B 14 Sequences
B @ Views
B @ Materiaized Views

g Trgger Fur
5 pa cataog

[# Creste Functon

@ DocsFunctons

-2 information_sq
B & Extensions

5 @ Foreign Data Wrappers
B Tablespaces
3

B3 72, Replication Siots. =

Roles

_images/image_074.png
} omniDa

@oeistore-ds2 x

dat REATE OR REPL, jame

-~ [argmode] [argname] argtype [{ DEFAULT | = } default_expr]
4)

5 --RETURNS rettype

6 --RETURNS TABLE (column_name column_type)

7 LANGUAGE plpgsql

8 --IMMUTABLE | STABLE | VOLATILE

Foreion Tables
B 14 Sequences
B @ Views

B @ Materiaized Views

(g Functions (6)| 9 --STRICT
5 gy TragerFunctons 10 --SECURITY DEFINER

5 pa cataog

2 information_schema
52 omido

B & Extensions
B3 @) Foreign Data Wrappers
£ B Tablespax

> =

Q @ [Auocommit © Notconnected

_

58t Rokes

B3 72, Replication Siots.

_images/image_079.png
1 Debugger fnc_count vowels X

DECLARE
str text;
ret integer;
i integer;
len integer;
tmp text;
BEGIN
upper(p_input);
0;

Lomuoonwna

£ Adjust parameters and start

_

input text | The quick brown fox jumps over the lazy dog

_images/image_080.png
5 i integer;
6 len integer;
7 tmp text;
8

BEGIN
9 | strosupper(pinput);
10 ret
noi
12 len := length(p_input);

13 WHILE i <= len LOOP
14 IF substr(str, i, 1) in ('A", 'E', 'I', '0', 'U') THEN

> Bl

e tert The quick brown fox jumps o
2 found bool

B ot ML

4 i UL

s e UL

6 e i UL

7 [T

_images/image_077.png
= sippets | @ 21205 | @ ocisioe-os2 x

IStre) postares@posigres
s quey x| create Function o

Actve dat

1 SELECT public.fnc_count_vowels|'The quick

O @ Views

O @ Materiaized Views

S Functons (7)
6 browse_by_actor
B 8 browse by_categary
B browse.by.tite

© (@) reconteo
(8 fne.countvon o preay

=) retums inte
€ o] 2 SR Q@ [auoconmit © e Numberof
g2 oo [#' EdtFunction

g2 newcustomer| 3 Debus Function
0 g8 puchase
£ g3 TrggerFunctons
B 2 po_catalog
&2 informstin schema .

X Drop Function

_images/image_078.png
DECLARE
str text;
ret integer;
i integer;
len integer;
tmp text;

BEGIN
str
ret

upper(p_input);

Lomuoonwna

1

% Adustparameters and start

_

_images/image_133.png
B @ PosigresaL 10.4
5 S Databases 2)
B2 posigres
52 omnids_tests
52 Schemas (1)
82 public

- @ Foreign Data Wrappers
B 72; Logical Repication
B 72, pglogical

e

_images/image_135.png
& (Node 1) omnidb@omnids._tests
10.33.3114:5432

1 select pglogical.replication_set_add_table(
2 set_name := ‘default_insertonly’,
3 relation := ‘public.test_table’ ::regclass,
B & Extensions 4 synchronize_data := true,
- @ Foreign Data Wrappers 5 colums := null,
B 2. Logical Repication 6 rowfilter := null
7))
> = Q @ [Aocommit © Notcomected

_images/image_134.png
New Table X

Table Name: | test_table

_

Consiraint Name Columns . rable Referenced Columns Update Rule

_images/image_137.png
6 Node 2 omnic_tess X

® 10.33.3.115:5432 Create Subscription x

select pglogical.create_subscription(|
subscription_name := 'test_sub’,
provider_dsn := 'host=10.33.3.114 port=5432 dbname=omnidb_tests user=omnidb password=omnidb',
replication_sets := array['default’, default_insert_only', 'ddl_sql'],

synchronize_structure := true,

synchronize_data := true,

forward_origins := array['all'],

B @ PosigresaL 10.4
5 S Databases 2)
B2 posigres
52 omnids_tests
52 Schemas
& & Extensions

apply_delay := '@ seconds'::interval

)

CoNo s w2

5 Foreign Data Wrappers

Q @ [Awocommit © Notcomnected

Data

_images/image_136.png
€ (Node 1) omridb@omrict.tests
103331145432

52 Schemas (4

& & Extensions

- @ Foreign Data Wrappers

- ene hoSI=10.33.3.14 port=5432 dbname
B 7= Replication Sets (3)

7= ddisal

872 detautt

B Z= default insert_only

_images/image_139.png
Y

} omnNiDa

(Node 2) omnidb@omnidb_tests I
10.33.3715:5432

& & PosigresaL 10.4 -
& & Databases 2)
B postgres
B = omnidb_tests.
& 2 Schemas (4
B puic
553 Tables (1)

B [test table.
&[0 coms @)
G P primaryKey
B P Foreignkeys
& P Uiques
B[Checks
O @ Excludes
X inderes
9 Rues
G Tiggers
£+ [Inherited Tables
£ [Parttions

B 533 Foreign Tables:
B 13 Sequences
B @ Views
& @ Materialized Views
5 €8 Functions

£ g8 Trigger Functions
B & pg_catalog -

_images/image_138.png
6 Node 2 omnic_tess X

& (Node 2) omnidb@omnidb_tests
10.33.3715:5432

select pglogical.cre
subscription_name

provider_dsn := 'hos
replication_sets

synchronize_structur
synchronize_data :
forward_origins := ¢
apply_delay := '@ se

8 & Eaonsons

5 Foreign Data Wrappers
B 72; Logical Repication

pological
5 28 Notes 2)

ER RN PR

5 noder
B4 noder
- aue host=10.33.3 114 port=5432 dbne

B8 node2 (ocal)
B¢ node2
-+ aue host=10.33.3 115 port=5432 dbne

£ Replication Sets
B Q) Subscriptions (1)

_images/image_130.png
@ Node 1 -omnid tests X

p—
@ |

= 8 o ns

& S Databases 2)
B postgres
5 omnidh_tests
8 & Schemas
B & Exensions
@ Foreign Data Wrappers
B %5 Logical Replication

_images/image_129.png
1 CREATE EXTENSION pglogicall
B PostgresaL 104 2 --SCHEMA schema_name
e 5 3 --VERSION VERSION
4 --FROM old_version
B postgres 5

Q @ Amn-nmnonmmmm

_images/image_132.png
@ Node 1 -omnid tests X

& (Node 1) omnidb@omnidb_tests
10.33.3114:5432

B postgres
5 omnidh_tests
8 & Schemas
B & Exensions

@ Foreign Data Wrappers
B %5 Logical Replication

L ene host=10.33.3.14 port=5432d
= Repliation Sets (3)
B 7= ddLsql

B2 defaut

_images/image_131.png
“

B @ PosigresaL 10.4
5 S Databases 2)
B2 posigres
52 omnids_tests
52 Schemas
& & Extensions

5 Foreign Data Wrappers

2 Rettesh

[# CresteNode

as @

select pglogical.create_node(
node_name := ‘nodel’,
dsn := 'hos

Q @ Mmmnﬂnmmmad

©.33.3.114 port=5432 dbname=omnidb_tests user=omnidb password=omnidb’

_images/image_071.png
admin & & @ @ signout

= sippets | @ 21205 | @ ocisioe-os2 x

p—

& G PostgesaL 969 @ Home About Download Documentation Community Developers Support Donate Your account

& & Databases 2)
18th October 2018: PostgresQL 11 Released|
8 S postgres

& ds2

g Documentation — PostgresQL 9.6 search the documentation for. Q
O sl 2 refesn Supported Versions: Current (11)/10/9.6/9.5/9.4/9.3
B & Bxter et Development Versions: devel
0@ roraf 2 CrateSehem Unsupported versions: 9.2/9.1/9.0/8.4/8.3/82/81/8.0/7.4/7.3

B, Tablespaces | @) Doc: Schemas

O 38 Roles PostgresQL 9.6.10 Documentation

Prev up Chapter 5. Data Definition Next

B3 72, Replication Siots.

5.8. Schemas

A PostgresQL database cluster contains one or more named databases. Users and groups of users are shared across the entire cluster, but no other data Is
shared across databases. Any given client connection to the server can access only the data In a single database, the one specified in the connection request.

Properties | DB
Note: Users of a cluster do not necessarily have the privilege to access every database in

the cluster. Sharing of user names means that there cannot be different users named, say,
joe in two databases in the same cluster; but the system can be configured to allow joe
access to only some of the databases.

Adatabase contains one or more named schemas, which In turn contain tables. Schemas also contain other Kinds of named objects, Including data types,

_images/image_072.png
(DeliStore) postores@postres 5
127.00.1:5432

Actve database: ds2

B PostaresaL 969
& & Databases 2)
B postgres
B 2
52 Schemas (4
B2 puic
52 pg catalog
82 information_schema
o (S oma)
B & Extensions
E3-) Foreign Data Wrappers
B Tablespaces
O 38 Roles

B3 42, Replication Slots

_

Schema | omnido

Owner. postgres.
AcL {postares=UC/postgres ds2=UC/postares.

_images/image_087.png
W

o ;s wN

DECLARE

text;
integer;
integer;

str

i

len
rec
BEGIN

len

length(p_input) ;

SELECT © AS a, @ ASe, 8 AS i, 0 AS 0, © AS u INTO rec;
WHILE i <= len LOOP

WHEN 'A" then
WHEN 'E' then
WHEN 'I' then

WHEN '0" t
WHEN 'U"
ELSE NULL;

hen
hen

CASE substr(str, i,

rec.
rec.
rec.
rec..
rec.

1
a
e
i
o
u

rec.
rec.
rec.
rec.
rec.

cobow
o

-

siribut

!

e tert The quick brown fox jumps o
2 found bool

B ot ML

F i UL

5 e e L

6 _Case_varisbie 16_ i UL

_images/image_088.png
17 Debugger fnc_countvowels2 X

Trtext;

4 i integer;

5 len integer;

6 rec record;

7 BEGIN

8 str := upper(p_input);
9 i

10 len := length(p_input);

1 SELECT @ AS a, @ AS e, B AS i, B AS o, B AS u INTO rec;
120WHILE i <= len LOOP

13 CASE substr(str, i, 1)
14 WHEN ‘A’ then rec.a := rec.a + 1;
15 WHEN 'E' then rec.e := rec.e + 1;

-

3

T S e e
2 [rows v

- o mauokEoMFoKD

10 rec u intd 0 I
oo me .

_images/image_084.png
1 Debugger fnc_count vowels X

7 tmp text;

8 BEGIN
9 str := upper(p_input);
18 ret := 0;

noi
12 len := length(p_input);
13 WHILE i <= len LOOP

14 IF substr(str, i, 1) in ('A", "U') THEN
15 SELECT pg_sleep(1) INTO tmp;

16 ret := ret + 1;

17 END IF;

18 i=i+d;

19 END LOOP;
220 RETURN ret;
21 END;
2

% £ Finished- Total duration 11.044 s

x
18 -
e
i
¥
E
i
B
B
b
;

Duration(s)

9 10 11 12 13 14 18 14 18 14 15 16 18 14 18 14 18 14 15 16 18 14 15 16 18 14 18 14 18 14 18 14 18 14 18 14 15 16 18 14 18

_images/image_086.png
17 Debugger fnc_countvowels2 X

1
2 DECLARE

3 strotext;

4 i integer;
5 len integer;
6 rec record;
7 BEGIN
8 str.
9 i
10 len

upper (p_input) ;

13 CASE substr(str, i,
14 WHEN "A" then rec.
15 WHEN "E" then rec.
16 WHEN 'I' then rec.
17 WHEN '0" then rec.
18 WHEN 'U" then rec.
19 ELSE NULL;

= length(p_input);
11 SELECT @ AS a, 0 ASe, 0 AS i,
12 WHILE i <= len LOOP

1
a
e
i
o
u

rec.
rec.
rec.
rec.
= rec.

cobow

AS 0, @ AS u INTO rec;

o

% Adustparameters and start

_

input text | The quick brown fox jumps over the lazy dog:

_images/image_091.png
@oeistore-ds2 x

(DeliStore) postores@postres 5
127.00.1:5432

database: ds2

& (6 PostaresaL 563
&S Databases 2)
B postgres
B 2
B & Schemas
B & Extensions
E3-) Foreign Data Wrappers
B Tablespaces
O 38 Roles

B3 42, Replication Slots

14 Monitoring X

Memory Usage & O | 10 seconds x

admin & & @ @

Locks & © [15 |seconds x
System Memory Usage (Total: 7675ME) Locks
—Vemory M Exclusivelock [AccessShareLock
100 20
0 It
0 £
2 <10
) £
2
0 m 05
o o
094423 094435 094445 0s:4423 08:4439
Time Time
CPUUsage & O 10 seconds x Backends & O |15 seconds x
CPU Usage Backends (max_connections: 100)
al O W1 2 —posigres I ds2
100
0
a6
S a0

_images/image_089.png
17 Debugger fnc_countvowels2 X

3 CASE substr(str, 1, 1) B
14 WHEN 'A’ then rec.a := rec.a + 1;
15 WHEN 'E' Then rec.e := rec.e + 1;
16 WHEN 'I' then rec.i := rec.i + 1;
17 WHEN '0' then rec.o := rec.o + 1;
18 WHEN U’ then rec.u := rec.u + 1;
19 ELSE NULL;
20 END CASE;
2 i=it;
22 END LOO
©23 RETURN rec.a + rec.e + rec.i+rec.o trec.u;

e tert The quick brown fox jumps o
2 found bool t

B tet THE QUICK BROWN FOX.JU
F a4

5 e e aa

6 rc a a1

7w B 3

5 e i a1

9 re o e 4

0 e u 2

11| _case_Variable_16_ [T

_images/image_090.png
17 Debugger fnc_countvowels2 X

3 CASE substr(str, i, 1)

14 WHEN ‘A’ then rec.a := rec.a + 1;
15 WHEN 'E' then rec.e := rec.e + 1;
16 WHEN 'I' then rec.i + 1;
17 WHEN ‘0" then rec.o + 1;
18 WHEN ‘U’ then rec.u + 1;
19 ELSE NULL;

20 END CASE;

2 i=i+i;

22 END LOOP;

223 RETURN rec.a + rec.e + rec.i + rec.o + rec.u;
24 END;
25

% Finished- Total duration 00155

_

10
09
08
[
05
[
04
03
02
01
0

8 9 10 11 12 13 21 13 2 13 15 21 13 21 13 21 13 18 21 13 16 21 13 21 13 2 13 21 13 21 13 21 13 17 2 13 21 1B A 1B

Duration(s)

]

_images/image_124.png
& Node 1 -omni_tests X

@ (ot) oo ests |

- € PosigreSaL 10.5 (Debian 10.52pgdg90+1)
5 S Databases 2)
B2 posigres
52 omnids_tests
B2 Schemas (3)
& & Extensions

5 Foreign Data Wrappers
B 72, Logical Replication

B Tablespaces

. Physical Replication Sots
 Logical Repiication Slots (1)

_images/image_123.png
Node 2-omnidb_tests X

(Node 2 omridb@omnicb_tests
B e e 8 Create subscription X

- € PosigreSaL 10.5 (Debian 10.52pgdg90+1)
5 S Databases 2)

B2 posigres

52 omnids_tests

B2 Schemas (3)

& & Extensions

5 Foreign Data Wrappers
&

B @ Publcations

(0 swasmn]
© testsub

- eeeEnabled: True

"~ ese Connino: host=10.33.2.14 doname=om,
& @ Referenced Pubications.

1 CREATE SUBSCRIPTION testsub

2 CONNECTION 'host=18.33.2.114 dbname=omnidb_tests user=omnidb password=omnidb’
3 PUBLICATION testpub

4 —-WITH (

5 --copy_data = { true | false }

6 --, create_slot = { true | false }

7 enabled = { true | false }

8 slot_name = 'name’

9 synchronous_commit = [f] on | remote_apply | remote_write | local | off }|
10 connect = { true | false }

m

12

Q@ [Auocommit © e starttime: 11/01/2018 17.33:48 Duraton: 219.31 ms

CREATE SUBSCRIPTION.

_images/image_126.png
& (Node 2) omnidb@omnidb_tests
103327155432

& & Databases 2)
B & postgres.
B = omnidb_tests.
& 2 Schemas (3)
8 2 puic
553 Tables (1)

Active database: omnid_tests

G PostgreSQL 10.5 (Debian 10.5:2.p9dg90+1)

6 Node 2 omnic_tess X

1 SELECT t.login
2 . t.full_name
3 . t.registration_date
4
5

FROM public.customers t
ORDER BY t.login

&{E8 custome]

5 S5 Foreign Ta

B} Sequences

Q queryData

> |ER edtoata

B @ Views
B @ Materiaized Views
% Functions

B3 g Trigger Functions
B2 po_catalog

E3- 2 information._schema
B & Extensions

B3 @) Foreign Data Wrappers

[# et Record

[Z Update Records
13 Count Records
X Delete Records:

& Tuncate Table

= Number o records: 2
Q@ [oconmi © e GoiEE e 17911 owton 40221 ma

1 rafael Rafacl Thofehm Casiro 20181101 00:00:00+00:00
2 willam | Willam anski 20181101 0000:00+00:00

_images/image_125.png
@ Node 1 -omnid tests X

B public.customers

select * from public.customers t
1 order by t.login

omnid_tests

- € PosigreSaL 10.5 (Debian 10.52pgdg90+1)
5 S Databases 2)
B2 posigres

52 omnids_tests

52 Schemas (3)
B puic

S5 Foreign Tl

B 13 sea Q, Query bata
B @ Views * [\ Edtbata
& @ Materialized Views

[# st Record

o g Focts B ey
& Functons
& oo 13 Count Records
2 pg catalog

[y o X Delete Records

B & Extensions
5 Foreign Data Wrappers

& Tuncate Table

Query 10rows ¥ | Save time: 0.057 seconds

William lvanski 20181101
2 X el Rafael Thofeh Castro | 20181101
3 |+

_images/image_128.png
postgresal 10333114 5432 | omnidb_tests omnidd | Node1
postgresgl 10333115 5432 | omnidb_tests | omnidb Node2

_images/image_127.png
&3 suppets ielome | 1estfrst sl x

5 pa frstievel A1 --Used by devs

Refresh

B New Folder bg_proc p

Y r— p-prosrc like '%p%

[# Rename Folder

X Delete Folder

_images/image_119.png
B € PostgreSQL 10.5 (Debian 10.52.pgdg90+1)
5 S Databases 2)
B = postgres
B = omnidb_tests.

& 2 Schemas (3

B puic

B 353 Tables (1)

© {3 owores)
B3 53 Foreign Tables
B} Sequences
B @ Views

O @ Materiaized Views
B g Functions

6 Node 2 omnic_tess X

_

>> Console tab. Type the commands in the editor below this box. \? to view command list.
>> CREATE TABLE customers (

login text PRIMARY KEY,

full_name text NOT NULL,

registration_date timestamptz NOT NULL DEFAULT now()

)
CREATE TABLE

_images/image_118.png
- € PosigreSaL 10.5 (Debian 10.52pgdg90+1)
5 S Databases 2)
B2 posigres
52 omnids_tests
52 Schemas
& & Extensions

5 Foreign Data Wrappers
- 72, Logical Replication

- @ Publications » = = Q @ [auccommit O Notcomected
B Q) Subscriptions
B
g Toblespaces

[

B g, Replication Siots

_images/image_121.png
B Databases (2)
B8 posges

B = omnidb_tests.
52 Schemas (3)
B & Extensions

@ Node 1 -omnid tests X
(Node) amridb@ornid_tests =
105327145432

——

G PostgreSQL 10.5 (Debian 10.5:2.p9dg90+1)

@ Foreign Data Wrappers
B ;%; Logical Replication
& @ Pubications (1)

B{@ testpud

- eee AllTables:False

Insert: True
Update: True

Delete: True:

m

1 CREATE PUBLICATION testpub
2 FOR TABLE public.customers|
3 --FOR ALL TABLES
4
5

-WITH (publish = 'insert, update, delete, truncate')

» = = Q @ [Auccommit O e Starttime:11/01/2018 17.30:14 Duraton: 60181 ms
[T
CREATE PUBLICATION

_images/image_120.png
- € PosigreSaL 10.5 (Debian 10.52pgdg90+1)
5 S Databases 2)
B2 posigres
52 omnids_tests
B2 schemas (3)
& & Extensions
5 Foreign Data Wrappers

- 72, Logical Replication

[# Create Pubication

@ DocsPubicstions

CREATE PUBLICATION testpub
FOR TABLE public.customers|
-FOR ALL TABLES

-WITH (publish = 'insert, update, delete, truncate')

_images/image_122.png
- € PosigreSaL 10.5 (Debian 10.52pgdg90+1)
5 S Databases 2)

B2 posigres

52 omnids_tests

B2 schemas (3)

& & Extensions

5 Foreign Data Wrappers

Refresh

[# Create subscrpion

@ Do subscrptons

6 Node 2 omnic_tess X

__

CREATE SUBSCRIPTION testsub

CONNECTION 'host=10.33.2.114 dbname=omnidb_tests user=omnidb password=omnidb'

PUBLICATION testpub

--WITH (

copy_data = { true | false }
create_slot = { true | false }
enabled = { true | false }
slot_name = ‘name’
synchronous_commit =
connect = { true | false }

Q @ Mmmnﬂnmmmad

{ on | remote_apply | remote_write | local | off }

_images/image_082.png
W T
8 BEGIN

9 str := upper(p_input);
1

i

12 len := length(p_input);
13 WHILE i <= len LOOP

14 IF substr(str, i, 1) in (‘A" L 'UT) THEN
15 SELECT pg_sleep(1) INTO tmp;

16 ret := ret + 1;

17 END IF;

18 i=i;

19 END LOOP;
£20 | RETURN ret;
21 END;

e tert The quick brown fox jumps o
2 found bool

B tet THE QUICK BROWN FOX.JU
4 i UL

s e L

6 e i UL

7 [T

_images/image_083.png
W T
8 BEGIN
9 str := upper(p_input);
18 ret
i

length(p_input) ;

12 len
13 WHILE i <= len LOOP
14 IF substr(str, i, 1) in ('A", "U') THEN
15 SELECT pg_sleep(1) INTO tmp;
16 ret := ret + 1;
17 END IF;
18 i=i;
19 END LOOP;
420 RETURNret;
21 END;
2

s -

e tert The quick brown fox jumps o
2 found bool t

B tet THE QUICK BROWN FOX.JU
4 a1

s a4

6 e a4

7 tent

_images/image_081.png
6 len integer;
7 tmp text;

8 BEGIN
9 str

upper (|

input) ;

i
12 len

length(p_input) ;

13 WHILE i <= len LOOP
14 IF substr(str, i, 1) in ('A", L 'UT) THEN
15 SELECT pg_sleep(1) INTO tmp;

.

e SR T
2 foms o1

o W ot THEQUEKEROWN FOX 0

“ o

s ErarT

6 len intd NULL I
T T L

_images/image_011.png
g

fe_sendauth: no password supplied

_images/image_012.png
T T R T

postgresal 127001 [e T—————]

oace 127001 w2 e sveteM omoe [

matay | 127001 06| employes root variaos | []

_images/image_009.png
2120 New Connection

_images/image_010.png
postgresal | 127001 S e wimvensi postgresaL [| 2 PIT)

osce 127001 e SisTeM oo [2 x¥©
moristo 127001 306 empioyees oot Morss [2 x¥®

_images/image_015.png
C test @ @ @ Signout
omNIDa Connections

Query
12700.1:5432

B 6 Postoresal

_images/image_016.png
> = a a [t 0 nicmees (@ v | B

_images/image_013.png
g

could not connect to server: Connection refused
Is the server running on host *127.6.0.1" and accepting
TCR/IP connections on port 54327

_images/image_014.png
> = Q @ Ammmmnoumm-m csv < B

_images/image_017.png
@ postoresaL-testab x

Im:
al

@ (PostgresaL) williamivanski@testdd
12700.1:5422

@ (PostoresaL) williamivanski@testdd
12700.1:5422

(Oracle) SYSTEM@XE
1270011521

(MariaD8) root@employees
127.00.1:3306

& (0mniDg) villiam@william
12700.1:5432 (omnidb.org:22)

_images/image_018.png
@ PostoresaL-testab x

(PostgreSQ) willamivanski@testd> i~
127001:5432

A 3

B 6 PostoresaL

Password

_images/image_019.png
@ PostoresaL - delstore2 x

& (PostoresaL) wiiamivansii@testas
127,00 15422

B € PostgreSQL 10.5 (Ubuntu 10.50ubuntu0.18.04)
* 8 owmans
B postgres.
52 delistore2
& 2 Schemas ()
B2 puiic
B2 pocataiog
B3 2 information_schema
B & Exensions
5 @ Foreign Data Wrappers

nav.xhtml

 Table of Contents

 		
 The OmniDB Handbook

 		
 1. Introduction

 		
 History

 		
 2. Installation

 		
 OmniDB Application

 		
 OmniDB Server

 		
 OmniDB with Oracle

 		
 OmniDB User Database

 		
 OmniDB configuration file

 		
 OmniDB in the browser

 		
 3. Creating Users and Connections

 		
 Logging in as user admin

 		
 Creating another user

 		
 Signing in as the new user

 		
 Creating connections

 		
 Using SSH tunnels

 		
 4. Managing Databases

 		
 Sections of the Workspace window

 		
 Connection Outer Tab

 		
 Working with databases

 		
 Working with multiple tabs inside the same connection

 		
 5. Creating, Changing and Removing Tables

 		
 Creating tables

 		
 Editing tables

 		
 Removing tables

 		
 6. Managing Table Data

 		
 7. Writing SQL Queries

 		
 SQL Autocomplete

 		
 8. Visualizing Query Plans

 		
 Textual visualization

 		
 Tree visualization

 		
 9. Visualizing Data

 		
 Simple graph

 		
 Complete graph

 		
 10. Managing other Elements

 		
 11. Additional Features

 		
 User Settings

 		
 Contextual Help

 		
 Snippets

 		
 Backend Management

 		
 Properties and DDL

 		
 Export Data

 		
 Query History

 		
 SSH Console

 		
 12. OmniDB Config Tool

 		
 Set home directory

 		
 Create super user

 		
 Vacuum

 		
 Reset database

 		
 Delete temporary files

 		
 13. Writing and Debugging PL/pgSQL Functions

 		
 Introduction

 		
 Writing functions

 		
 Debugging functions

 		
 Inspecting record attribute values

 		
 14. Monitoring Dashboard

 		
 Types of Monitoring Units

 		
 Showing and hiding units in the dashboard

 		
 Writing custom Monitoring Units: Grid

 		
 Writing custom Monitoring Units: Chart

 		
 Writing custom Monitoring Units: Chart-Append

 		
 15. Logical Replication

 		
 Creating a test environment

 		
 Connecting to both nodes

 		
 Creating a test table on both nodes

 		
 Create a publication on the first machine

 		
 Create a subscription on the second machine

 		
 Testing the logical replication

 		
 16. pglogical

 		
 Creating a test environment

 		
 Install OmniDB pglogical plugin

 		
 Connecting to both nodes

 		
 Create pglogical extension in both nodes

 		
 Create pglogical nodes

 		
 Create a table on the first machine

 		
 Add the new table to a replication set on the first machine

 		
 Add a subscription on the second machine

 		
 Add some data in the table on the first machine

 		
 Check if delete is being replicated

 		
 17. Postgres-BDR

 		
 Creating a test environment

 		
 Install OmniDB BDR plugin

 		
 Connecting to both nodes

 		
 Create required extensions

 		
 Create the BDR group in the first node

 		
 Join the BDR group in the second node

 		
 Creating a table in the first node

 		
 Adding some data in the second node

 		
 Adding some data in the first node

 		
 18. Postgres-XL

 		
 Creating a test environment

 		
 Install OmniDB XL plugin

 		
 Connecting to the cluster

 		
 Creating a HASH table

 		
 Creating a REPLICATION table

 		
 19. Deploying omnidb-server

 		
 Command options

 		
 Configuration File

 		
 Deploying OmniDB directly

 		
 Deploying OmniDB behind a reverse proxy

 		
 20. Console Tab

 		
 21. Plugin System

 		
 22. Advanced Object Search

 		
 23. Debugger Plugin Installation

 		
 23.1. Linux Installation

 		
 23.1.1. Installing from Debian PGDG repository

 		
 23.1.1.1. Install Debian PGDG repository (if not already)

 		
 23.1.1.2. Install omnidb_plugin for your PostgreSQL version X.Y

 		
 23.1.1.3. Set shared_preload_libraries

 		
 23.1.1.3. Post-installation steps

 		
 23.1.2. Installing from DEB/RPM packages

 		
 23.1.2.1. Install the package

 		
 23.1.2.2. Create a symlink

 		
 23.1.2.3. Set shared_preload_libraries

 		
 23.1.2.4. Post-installation steps

 		
 23.1.3. Compiling the extension from source

 		
 23.1.3.1. Install headers for PostgreSQL and libpq

 		
 23.1.3.2. Compile omnidb_plugin

 		
 23.1.3.3. Install omnidb_plugin

 		
 23.1.3.4. Set shared_preload_libraries

 		
 23.1.3.5. Post-installation steps

 		
 23.2. Windows Installation

 		
 23.2.1. Downloading the plugin

 		
 23.2.2. Installing the plugin

 		
 23.2.3. Set shared_preload_libraries

 		
 23.2.4. Post-installation steps

 		
 23.2.4.1. Create omnidb schema in your database (should be done by a superuser)

 		
 23.2.4.2. Create sample functions (optional)

 		
 23.2.4.3. Next steps

 		
 23.3. FreeBSD Installation

 		
 23.3.1. Downloading the plugin

 		
 23.3.1. Installing the plugin

 		
 23.3.3. Set shared_preload_libraries

 		
 23.3.4. Post-installation steps

 		
 23.3.4.1. Create omnidb schema in your database (should be done by a superuser)

 		
 23.3.4.2. Create sample functions (optional)

 		
 23.3.4.3. Next steps

 		
 23.4. MacOSX Installation

 		
 23.4.1. Limitations

 		
 23.4.2. Compiling the extension from source

 		
 23.4.2.1. Install SDK headers for Mac OS

 		
 23.4.2.2. If not installed, install PostgreSQL from Homebrew

 		
 23.4.2.3. Compile omnidb_plugin

 		
 23.4.2.4. Install omnidb_plugin

 		
 23.4.2.5. Set shared_preload_libraries

 		
 23.4.2.6. Post-installation steps

 		
 23.5. Post-installation steps ** REQUIRED **

 		
 23.5.1. Grant privileges to each database user that will debug functions (should be done by a superuser)

 		
 23.5.2. Enable passwordless access to each database user that will debug functions

 		
 trust

 		
 md5

_images/image_022.png
e T

elstore2 al
B € PostgreSQL 10.5 (Ubuntu 10.5 0ubuntu0. 18.04)

&2 Dotabases 5)
B postares

Q aueryvata

FH st Data

[nsert Record
[# Update Records
1% Count Records
X Dette Records

C Trncate Table

B @ Views
- @ Waterisized Views
g3 Functions

B g Trigger Functions

_images/image_023.png
@ PostoresaL - delstore2 x

& (PostoresaL) wiiamivansii@testas =c

127.001:5432 e

1 SELECT t.category
2 , t.categoryname

3 FROM public.categories t
4 ORDER BY t.category

B € PostgreSQL 10.5 (Ubuntu 10.5 0ubuntu0. 18.04)

B S Detabases (5)

B postgres.

5S delistorez.

B2 Schemas (3
B 2 public

&{E categories

o e = i e Number of ecords: 16
B custse > = Qe [s © 1w G 154555 uraton 0141 s

=y @meses
~
® B

B3 B orderlines

B[orders e
B3 £ procucts 2 2
5 1) reorder 3 |3
£ 253 Foreign Tables 4 14
13 Sequences 55
B @ Views : :
B @ Materialized Views P Famiy
& g8 s o R
B 8 Trigger Functions 10 Games
2 pg catalog NN Homor
B3 information_schema o wsic
B & Extensions BB New
8 @ Foreign Data Wrappers W ou o sam
B 2%, Logical Replication s 18 Sports
w6 T

&= employees

T

_images/image_020.png
@ PostoresaL - delstore2 x

& (PostoresaL) wiiamivansii@testas
127,00 15422

B € PostgreSQL 10.5 (Ubuntu 10.50ubuntu0.18.04)
*8 owmans
B postgres.
o
& & schemas (3)
5 2 puvlic
-

Foreign Tables
]} Sequences » = = a
B @ Views
6 @ Materisizea Views
B g Functions
B3 8 Trigger Functions
B2 pocataiog
52 information_schema
& & Exensions
£ @ Foreign Data Wrappers.

_images/image_021.png
} omnNiDa

@ PostoresaL - delstore2 x

& (PostoresaL) wiliamivanski@testab -
12700.1:5422
al

B € PostgreSQL 10.5 (Ubuntu 10.50ubuntu0.18.04)
*8 owmans
B & postgres
52 delbtorez
& 2 schemas ()
B2 puiic

Tables (5)
& E categories
B [0 cotumns) >

[Sared [T

" aee Nullable: NO
E-[T] categoryname
B 9 primaryKey (1)

_images/image_026.png
Query x

1 select pg_sleep(30)|

» = = a a [aocommit O Notcomected Canceled.

@e=es

_images/image_027.png
[R D B

1 select pg_sleep(30)

Q@ [Auccommit © Notcomected Canceled.

[T

_images/image_024.png
@ PostoresaL - delstore2 x

& (PostoresaL) wiiamivansii@testas
127,00 15422

5" € PostgreSQL 10.5 (Ubuntu 10.50ubuntu0.18.04)
B S Dotabases (5)
B postgres
52 delistore2
B2 Schemas (3)
B2 puiic
S

B 1) inventory

[orderines
[orders
& [proucts
B [reorder

B S5 Foreion Tables

_images/image_025.png
@ PostoresaL - delstore2 x

=

1 select pg_sleep(0)|

& @ PostgreSQL 10.5 (Ubuntu 10.5-0ubuntu0.18.04)
& S atabases)
B & postgres
52 delistore2
& 2 schemas ()
B2 puiic

Tables (8)
{ER cotegories

(7 custist >
[customers

© @ oo @e=es
£ orderines

& [orers

- E procucts

B [reorder

B E5E Foreign Tables

3|3 sequences.

Start time: 10/21/2018 154816

_images/image_028.png
@ postoresaL-testab x

T [

testdb

Q@ [auocommit © Not comectea

_images/image_029.png
B NewTable

Table Name:

customer

T T

1
2
3

custid
cust_name

varchar(100)

NO.

_images/image_030.png
5= Console 3 faten % | m NewTobie +

Table Name: | customers

Columns | constraints | indexes:

cust_pk Primarykey (D) custid

_images/image_033.png
Console. Query

B NewTable

Table Name: | addresses

Columns | constraints | indexes:

add_pk Primary Key [acdia

addfil Focionkey [T custiid public customers cust_id cascADE cascADE

_images/image_034.png
@ postoresaL-testab x

=
5 tested Table Name:

(PostoreSQL) willamivanski@testdd Console Query public.customers ic addresses
e gi I = _ e

b Simple Graph

B S5 Foreion Tables
B 13 Sequences
B @ Views
B @ Materialized Views
gy Functions
B g8 Trigger Functions
B2 py.catalog
B2 information_schema
B & Eensions

addresses

% Complte Graph

add_street

custid

xxxxl

_images/image_031.png
@ postoresaL-testab x

Table Name: | customers.

5" € PostgreSQL 10.5 (Ubuntu 10.50ubuntu0.18.04)

B S Dotabases (5)

B postores

B deistore2

B2 emplojees

B testad
B2 Schemas (3)

B 2 puslic

Columns

& [0 comns ()

B 9 primaryKey (1)
B custok
[custa

_images/image_032.png
B NewTable x

Table Name: | addresses

Columns

addid serial No

add_street, varchar(200) No

EIEIEIES

custid integer No

i
i
i

_images/image_037.png
& (PostoresaL) wiiamivansii@testas
127,00 15422

& 55 Foreion e
B 13 seq
B @ Views
6 @ Materisizea views
gy Functions
B 8 Trigger Functions
B2 py.catalog
52 information_schema
B & Eensions
&3 Foreign Data Wrappers

4 Vacuum Table
@, Analyze Table
FE Ater Table (GU)

[Ater Taie (s01)

X Drop Table

_images/image_038.png
@ public.customers x

Table Name: | customers.

x
cust_name. character varying(100) No x
x

2
5 e
.

_images/image_035.png
} omnNiDa

& (PostoresaL) wiiamivansii@testas
127,00 15422

¢ g addresses

5 g3 Trigger Functions
8 2 pocataiog
- information_schema
B & Edensions

ML customers

p—
= =

Database testdb
Schema. public:
Owner postgres

AcL {postgres=UC/postgres =UC/postgres}

_images/image_036.png
B @ Materialized Views
B3 Functions
5 g3 Trigger Functions
8 2 pocataiog
- information_schema
B & Edensions
&3 Foreign Data Wrappers

—
N
R

Schema. public
Owner postgres
AcL {postgres=UC/postgres =UC/postgres}

addresses
add_id : integer
add_street : character varying

add_1
cust _i

umber : integer
:integer

customers
cust_id : integer
cust_name : character varying

_static/down.png

_static/minus.png

_static/file.png

_static/ajax-loader.gif

_images/ssh_tunnels_2.png
ssh.remote.com:22 192.168.0.10

\—IHl m 192.168.0.10:5432

ll (.

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down-pressed.png

_images/image_040.png
127.001:5432

& (PostoresaL) wiiamivansii@testas 50 consele e | 0 x [

testdb o

6 @ Materisizea Views
g3 Functions
5 £ Trigger Functions
&2 pocatalog
- information_schema
& Exensions
- 3 Foreign Data Wrappers
I e e T

4 Vacuum Table.

@ Anatyze Tabie
EB Ater Tabe (U
[At Tobe (s01)

X Drop Table

_images/image_041.png
6 PostaresaL 105 (Ubunty 105-0ubuntu0.18.08)
52 vatsbases 5)
B = postgres
G2 gastorez
B2 employees
5 et
52 schemas ()
& publc
B 353 Tables (2)
- [addresses
(g cusomer”

9 Edtata
[nsert Record

[Z Update Records
13 Count Records
X Delete Records:

& Tuncate Table

_images/image_039.png
OMNIDE Connections

(Postgres| CommMand: akter table public customers add column cust_nameinteger not null

127001
Message: column “custname” of relation “customers” already exists

_images/image_044.png
‘select * from public.customers t
1 order by t.cust_id|

1 X

2 X

3 x

el - :
e = .
el) :

P SO S—
el . :
b = :

_images/image_045.png
select * from public.customers t
1 order by t.cust_id|

> | uery1orows v sevetime:0046 seconds

X/ x| x x| x x| x| x

Raael [Z it Content

ofo|~ ol o|a|wln]|

_images/image_042.png
& G PostgreSQL 10.5 (Ubuntu 10.5-0ubuntu0.18.04)

& S Databases (5)

B = postgres

O delistore2

6 employees

5 et
& 2 Schemas (3)

B3+ §53 Foreign Tables
B} Sequences
B @ views

O @ Materiaized Views
B g Functons

£ g8 Trigger Functions
-

select * from public.customers t

1

order by t.cust_id|

>

1

Query 10 rows

_images/image_043.png
select * from public.customers t
1 order by t.cust_id|

:
- :
. :
- :
o .
) p
s b
o, .
e E—

_images/image_048.png
select * from public.addresses t
1 brder by t.add_id

B o o :
Tk m..., o :
el i - :
Tl — - :
el i . :
ek —_— ;
ex s N S—
i

_images/image_046.png
1

Ademar Changed

_images/image_047.png
ertinto public.customers (custid, cust_name, cust_age) values (8, Wrong 2, 1)
Message:

duplicate key value violates unique constraint "cust_pk"
DETAIL: Key (cust_id)=(8) already exists.

‘Command: insert into public.customers (cust_id,cust_name, cust_age) values (7, Wrong 1. 1)
Message:

duplicate key value violates unique constraint "cust_pk"
DETAIL: Key (cust_id)=(7) already exists.

_images/image_203.png
illiam x

Console x| query x |%

iﬂ

Started from: | da/nn /2322 10: | ad/mm/asaa Command contains: | |

T T T T

201906-0420:.. 2019-06-04 20:1... 120.034ms CREATE TABLE data_types (cat_st_name varchar(...
2019060318 2019-06-03 18:5.. 91.995ms select * from pg_stat_activity

2019-06-0116:.. 2019-06-0116:0... 21.561ms select quote_ident(t indexname) as index_name, t
20190601 16:.. 2019-06-0116:0... 94.468 ms CREATE INDEX idx_test ON public.test (c1) ~WIT.
2019060116 2019-06-0116:0.. 5478 ms SELECT * FROM pg_settings WHERE name IN (m...
20190601 16:.. 2019-06-0116:0.. 9759 ms SELECT * FROM pg_settings WHERE name IN (m...
20190601 14... 2019-06-0114:2.. 18.496 ms SELECT name, setting, boot_val, reset_val FROM p.

Autocommit @ Not connected

Data || Messages || Explain

_images/ssh_tunnels_1.png
ssh.remote.com:22

ll —Il m o

_images/image_204.png
@y omnioa Connections

> OmniDB & x

The programs included with the Debian GNU/Linux system are free software
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/+*/copyright

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law,
Last login: Wed Jun 12 14:56:51 2019 from 45.4.238.41

omnidb@omnidb:~$ stty rows 38 cols 157
omnidb@omnidb:~$ cd static/OmniDB app/
omnidb@omnidb:~/static/OmniDB app$ ls -lh

total 24K

drwxrwxr-x 6 omnidb omnidb 4.0K Nov 19 2018 css
drwxrwxr-x 4 omnidb omnidb 4.0K Nov 19 2018 fa
drwxrwxr-x 4 omnidb omnidb 4.0K Nov 19 2018 fonts
drwxrwxr-x 4 omnidb omnidb 4.0K Nov 19 2018 images
drwxrwxr-x 3 omnidb omnidb 4.0K Nov 19 2018 js
drwxrwxr-x 11 omnidb omnidb 4.0K Nov 19 2018 lib

omnidb@omnidb:~/static/OmniDB app$ cd lib/
omnidblomnidb:~/static/OmniDB app/1ib$ s -lh
total 44K

drwxrwxr-x 3 omnidb omnidb 12K Nov 19 2018 ace
drwxrwxr-x 4 omnidb omnidb 4.0K Nov 19 2018 aimaraJs
drwxrwxr-x 2 omnidb omnidb 4.0K Nov 19 2018 chart
drwxrwxr-x 3 omnidb omnidb 4.0K Nov 19 2018 cytoscape
drwxrwxr-x 2 omnidb omnidb 4.0K Nov 19 2018 emojionearea
drwxrwxr-x 3 omnidb omnidb 4.0K Nov 19 2018 jgplot
drwxrwxr-x 4 omnidb omnidb 4.0K Nov 19 2018 jquery-ui
drwxrwxr-x 2 omnidb omnidb 4.0K Nov 19 2018 popuplS
drwxrwxr-x 4 omnidb omnidb 4.0K Nov 19 2018 tabs
omnidb@omnidb:~/static/OmniDB app/lib$ []

ISYYTYYSS

_images/image_193.png
-pgwem pological

_images/image_195.png
Q quenyTan

>_ Console Tab

22 Monitoring Dashboard

Q @ [Auocommit © Notconnected

_

_images/image_194.png
testplugin_ test_plugin

_images/image_197.png
Advanced Object Search

Text Filter
om () casesensitve) Regular Expression
Categorles Filter
) Check Definition () Check Name @ bata) Extension Name
{2 FK Column Name) FK Name. @ Eunction Definition) Function Name.
) Index Column Name:) Index Name. () inherited Table Name) Materialized View Column Name.
() Materialized View Name 2 PK Column Name Pk Name) Role Name.
) Rule Definition) Rule Name. () schema Name () sequence Name.
() Table Column Name: () Table Name () Table Trigger Name. () Tablespace Name
() Trigger Name () Trigger Source) Unique Column Name) Unique Name
() View Column Name) View Name
‘Schemas Filter
@ public
Data Category Filter

_images/image_196.png
@ (62) postgres@as2
127001:5432

B 6 PostgresaL 969
5 Databases 2)

B postgres

[# AterDatabase

Q Advanced Object Search

Q@ [uocommi

_

_images/image_199.png
P Starttime 11/14/2018 073318 Duration: 290122 ms

_

- Q Functon Defiiton (6 matches)
5 Q Data (1 mateh)

Qe |

_images/image_198.png
P Starttime 11/14/2018 073318 Duration: 290122 ms

_

@, Function Definton (6 matehes)
&{Q Data (1 maten)|

-Q publccategores (1 match)

_images/image_201.png
b b 100 ©))

_images/image_200.png
Search-public.categories X

|
2 select 'Data' as category,
3 ‘public’ as schema_name,
4 ‘categories’ as table_name,
5 ‘category' as column_name,
6 t.category: :text as match_value
7 from
8 (select t.category
9 from public.categories t
10 where 1=1
1 and lower (t.category::text) like lower('%om%')) t
12 union
13 select 'Data’ as category,
14 ‘public’ as schema_name,
15 ‘categories’ as table_name,
16 categoryname’ as column_name,
17 t.categoryname: :text as match_value
18 from
19 (select t.categoryname
20 from public.categories t
2 where 1= 1
2 and lower (t.categoryname: :text) Llike lower('%om%')) t
> = Q@ [ot © e G e 07829 Dwaton 21.219ms eV v B

_

_images/image_202.png
]] 100 ©))))

_images/image_184.png
g

(1045, "Access denied for user 'root'@'localhost’ (using password: NO)")

_images/image_183.png
>> \timing
Timing is on.
>> select *
from categories

P +
| category | categoryname |
+ +
11 | Action |
12 | Animation |
|3 | Children |
|4 | Classics |
15 | Comedy |
16 | Documentary |
17 | Drama |
18 | Family |
19 | Foreign |
10	Games
1	Horror
12	Music
113	New
14	Sei-Fi
15	Sports
16	Travel

+

‘

Autocommit © Idle Starttime: 11/08/2018 075444 Duration: 8.663 ms

_images/image_186.png
postgresal | 127001 willamivanski | PostgresaL.]
oace 127001 SvsTEM orscke

mariadh 127.001 3306 | employees | root

postgresal 127.001 542 wiliom willam

_images/image_185.png
g

(2003, "Can't connect to MySQL server on '127.0.0.1' ([Errno 111] Connection refused)")

_images/image_188.png
@ postoresaL-testab x

& (PostoresaL) wiiamivansii@testas

127.001:5432

_images/image_187.png

_images/image_190.png
@ PostoresaL - delstore2 x

& (PostoresaL) wiiamivansii@testas
127,00 15422

B € PostgreSQL 10.5 (Ubuntu 10.50ubuntu0.18.04)
* 8 owmanis
B postgres.
52 delistore2
B2 Schemas
B & Exensions
G- @ Foreign Data Wrappers

_images/image_189.png
B PostgreSQL 10.5 (Ubuntu 10.5-0ubuntu0.18.04)
o
B & postyres
B S deistore2
o]

B employees.
62 et

B wiliamivanski

B Tablespaces.

B 382 Roles.

B 3, Replcaion Siots

Q@ [adocommit © Not comected

@e=es

“This node belongs to another database, change active database to dellstore2?

_images/image_192.png
@ postoresaL-testab x

& (PostoresaL) wiiamivansii@testas
127,00 15422

B H5E Foreign Tables
B3 Sequences
5 @ Views
- @ Waterisized Views
g3 Functions
£ g3 Trigger Fnctions
8 pocatalog
-2 information_schema
& Exensions

ooL

Type: TABLE ; Name: customers; Owner: williamivanski

CREATE TABLE customers (|
cust_id integer NOT NULL,
cust_name character varying(108) NOT NULL

ALTER TABLE public.customers ALTER cust_id SET DEFAULT nextval(’customers_cust_id_seq’:

regelass) ;

ALTER TABLE customers ADD CONSTRAINT cust_pk
PRIMARY KEY (cust_id);

ALTER TABLE customers OWNER TO williamivanski;

_images/image_191.png
[o | o | |]
e —

1
2 custname character varying(100) No x

public
Table customers
on 54989
Ouner villamivansii
size Obytes
Tablespace. po_default
acL

options

Filenode base/64978/64969
Estimate Count [

Has Index true
Persistence Permanent
Number of Attributes 2

Numberof Checks [

Has 0Ds. false

Has Primary Key tnue

Has Rules false

Has Triggers false

Has Subclass false

s Partitioned false

s Partition false

Partition Of

