
OmniDB
Release 2.15.0

Oct 22, 2020

Contents:

1 1. Introduction 1

2 2. Installation 3

3 3. Creating Users and Connections 9

4 4. Managing Databases 19

5 5. Creating, Changing and Removing Tables 33

6 6. Managing Table Data 43

7 7. Writing SQL Queries 51

8 8. Visualizing Query Plans 57

9 9. Visualizing Data 63

10 10. Managing other Elements 67

11 11. Additional Features 73

12 12. OmniDB Config Tool 81

13 13. Writing and Debugging PL/pgSQL Functions 83

14 14. Monitoring Dashboard 101

15 15. Logical Replication 119

16 16. pglogical 127

17 17. Postgres-BDR 143

18 18. Postgres-XL 157

19 19. Deploying omnidb-server 173

20 20. Console Tab 179

i

21 21. Plugin System 183

22 22. Advanced Object Search 185

23 23. Debugger Plugin Installation 189

24 23.1. Linux Installation 191

25 23.2. Windows Installation 195

26 23.3. FreeBSD Installation 197

27 23.4. MacOSX Installation 199

28 23.5. Post-installation steps ** REQUIRED ** 201

29 Indices and tables 203

ii

CHAPTER 1

1. Introduction

OmniDB is an open source browser-based app designed to access and manage many different Database Management
systems, e.g. PostgreSQL, Oracle and MySQL. OmniDB can run either as an App or via Browser, combining the
flexibility needed for various access paths with a design that puts security first. OmniDB is actively developed,
automatically tested on a variety of databases and browsers and comes with full documentation.

Since early development, OmniDB was designed as an browser-based app. Consequently, it runs in any browser, from
any operational system. It can be accessed by several computers and multiple users, each one of them with his/her own
group of connections. It also can be hosted in any operational system, without the need of install any dependencies.
We will see further details on installation in the next chapters.

OmniDB’s main objective is to offer an unified workspace with all functionalities needed to manipulate different
DMBS. DBMS specific tools aren’t required: in OmniDB, the context switch between different DBMS is done with a
simple connection switch, without leaving the same page. The end-user’s sensation is that there is no difference when
he/she manipulates different DBMS, it just feels like different connections.

Despite this, OmniDB is built with simplicity in mind, designed to be a fast and lightweight browser-based application.
OmniDB is also powered by the WebSocket technology, allowing the user to execute multiple queries and procedures
in multiple databases in multiple hosts in background.

OmniDB is also secure. All OmniDB user data are stored encrypted, and no database password is stored at all.
When the user first connects to a database, OmniDB asks for the password. This password is encrypted and stored
in memory for a specific amount of time. When this time expires, OmniDB asks the password again. This ensures
maximum security for the database OmniDB is connecting to.

1.1 History

OmniDB’s creators, Rafael Thofehrn Castro and William Ivanski, worked in a company where they needed to deal
with several different databases from customers on a daily basis. These databases were from different DBMS tech-
nologies, and so they needed to keep switching between database management tools (typically one for each DBMS).
As they were not keen of the existing unified database management tools (that could manage different DBMS), they
came up with OmniDB’s main idea.

1

OmniDB, Release 2.15.0

OmniDB’s first version was presented as an undergrad final project in the Computer Science Course from the Federal
University of Paraná, in Brazil. The objective was to trace a common line between popular DBMS, and to study
deeply their metadata. The result was a tool written in ASP.NET/C# capable of connecting and identifying the main
structures (tables, keys, indexes and constraints), in a generic way, from several DBMS:

• Firebird

• MariaDB / MySQL

• Oracle

• PostgreSQL

• SQLite

• Microsoft SQL Server

OmniDB’s first version also allowed the conversion between all DBMSs supported by the tool. This feature was
developed to be user friendly, requiring just a few steps: the user needs to select a source connection, the structures
that will be converted (just tables and all their structures, along with their data) and the target connection.

2 Chapter 1. 1. Introduction

CHAPTER 2

2. Installation

OmniDB provides 2 kinds of packages to fit every user needs:

• OmniDB Application: Runs a web server on a random port behind, and provides a simplified web browser
window to use OmniDB interface without any additional setup. Just feels like a desktop application.

• OmniDB Server: Runs a web server on a random port, or a port specified by the user. User needs to connect to
it through a web browser. Provides user management, ideal to be hosted on a server on users’ networks.

Both application and server can be installed on the same machine.

2.1 OmniDB Application

In order to run OmniDB app, you don’t need to install any additional piece of software. Just head to omnidb.org and
download the latest package for your specific operating system and architecture:

• Linux 64 bits

– DEB installer

– RPM installer

• Windows 64 bits

– EXE installer

• Mac OSX

– DMG installer

Use the specific installer for your Operational System and it will be available through your desktop environment
application menu or via command line with omnidb-app.

3

https://omnidb.org/

OmniDB, Release 2.15.0

2.2 OmniDB Server

Like OmniDB app, OmniDB server doesn’t require any additional piece of software and the same options for operating
system and architecture are provided.

Use the specific installer for your Operational System and it will be available through command line with
omnidb-server:

user@machine:~$ omnidb-server
Starting OmniDB websocket...
Checking port availability...
Starting websocket server at port 25482.
Starting OmniDB server...
Checking port availability...
Starting server OmniDB 2.4.0 at 0.0.0.0:8000.
Starting migration of user database from version 0.0.0 to version 2.4.0
OmniDB successfully migrated user database from version 0.0.0 to version 2.4.0
Press Ctrl+C to exit

Note how OmniDB starts a websocket server in port 25482 and a web server in port 8000. You can also specify both
ports and listening address:

4 Chapter 2. 2. Installation

OmniDB, Release 2.15.0

user@machine:~$ omnidb-server -p 8080 -w 25000 -H 127.0.0.1
Starting OmniDB websocket...
Checking port availability...
Starting websocket server at port 25000.
Starting OmniDB server...
Checking port availability...
Starting server OmniDB 2.4.0 at 0.0.0.0:8080.
Starting migration of user database from version 0.0.0 to version 2.4.0
OmniDB successfully migrated user database from version 0.0.0 to version 2.4.0
Press Ctrl+C to exit

2.3 OmniDB with Oracle

OmniDB app and server does not require any piece of additional software, as explained above. But if you are going to
connect to an Oracle database, then you need to download and install Oracle Instant Client (or extract it to a specific
folder, depending on the operating system you use):

• MacOSX: Download Oracle Instant Client (64-bit) and extract in ~/lib;

• Linux: Download Oracle Instant Client (32-bit) (64-bit) and install it on your system, then set
LD_LIBRARY_PATH;

• Windows: Download Oracle Instant Client (32-bit) (64-bit) and extract it into OmniDB’s folder.

Note for Windows users using OmniDB app: For OmniDB 2.8 and above, you will need to extract Oracle Instant
Client libraries inside of folder OMNIDBAPPINSTALLFOLDER\resources\app\omnidb-server.

2.4 OmniDB User Database

Since version 2.4.0, upon initialization both server and app will create a file ~/.omnidb/omnidb-app/omnidb.
db (for OmniDB app) or ~/.omnidb/omnidb-server/omnidb.db (for OmniDB server) in the user home
directory, if it does not exist. That can be confirmed by the message OmniDB successfully migrated user database
from version 0.0.0 to version 2.4.0 you saw above. This file is also called user database and contains user data. If it
already exists, then OmniDB will check whether the version of the server matches the version of the user database:

user@machine:~$ omnidb-server
Starting OmniDB websocket...
Checking port availability...
Starting websocket server at port 25482.
Starting OmniDB server...
Checking port availability...
Starting server OmniDB 2.4.0 at 0.0.0.0:8000.
User database version 2.4.0 is already matching server version.
Press Ctrl+C to exit

Future releases of OmniDB will contain the user database migration SQL commands required to upgrade the user
database, if necessary. This way user data is not lost by upgrading OmniDB. Imagine the following scenario: you use
OmniDB 2.4.0 now and you decide to upgrade it to newest release 2.5.0, for example. After the upgrade, when you
start OmniDB server, it will apply the changes version 2.5.0 requires. So you will see something like that:

user@machine:~$ omnidb-server
Starting OmniDB websocket...
Checking port availability...

(continues on next page)

2.3. OmniDB with Oracle 5

http://www.oracle.com/technetwork/topics/intel-macsoft-096467.html
http://www.oracle.com/technetwork/topics/linuxsoft-082809.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/winsoft-085727.html
http://www.oracle.com/technetwork/topics/winx64soft-089540.html

OmniDB, Release 2.15.0

(continued from previous page)

Starting websocket server at port 25482.
Starting OmniDB server...
Checking port availability...
Starting server OmniDB 2.5.0 at 0.0.0.0:8000.
Starting migration of user database from version 2.4.0 to version 2.5.0
OmniDB successfully migrated user database from version 2.4.0 to version 2.5.0
Press Ctrl+C to exit

2.5 OmniDB configuration file

Starting on version 2.1.0, OmniDB server comes with a configuration file omnidb.conf that enables the user to
specify parameters such as port and listening address. Also, 2.1.0 enables us to start the server with SSL, this requires
a certificate and is configured in the same configuration file. For more details about how to deploy the OmniDB server,
please read Chapter 19.

Starting on version 2.4.0, this file is located in ~/.omnidb/omnidb-server/omnidb.conf in the user home
directory.

2.6 OmniDB in the browser

Now that the web server is running, you may access OmniDB browser-based app on your favorite browser. Type in
address bar: localhost:8000 and hit Enter. If everything went fine, you shall see a page like this:

6 Chapter 2. 2. Installation

OmniDB, Release 2.15.0

Now you know that OmniDB is running correctly. In the next chapters, we will see how to login for the first time, how
to create an user and to utilize OmniDB.

2.6. OmniDB in the browser 7

OmniDB, Release 2.15.0

8 Chapter 2. 2. Installation

CHAPTER 3

3. Creating Users and Connections

3.1 Logging in as user admin

OmniDB comes only with the user admin. If you are using the server version, the first thing to do is sign in as admin,
the default password is admin. You don’t need to login in the app version.

The next window is the initial window.

9

OmniDB, Release 2.15.0

3.2 Creating another user

Click on the Users icon on the upper right corner. It will open a popup that allows the current OmniDB super user to
create a new OmniDB user.

After clicking on the Users icon the tool inserts a new user called user2 (if that is the first user after admin).

10 Chapter 3. 3. Creating Users and Connections

OmniDB, Release 2.15.0

You will have to change the username and password. Check if you want this new user to be a super user. This user
management window is only seem by super users. When you are done, click on the Save Data button inside the popup.

You can create as many users as you want, edit existing users and also delete users by clicking on the red cross at the
actions column. Now you can logout by clicking in the Sign Out button in the top right corner.

3.3 Signing in as the new user

Let us sign in as the user we just created.

3.3. Signing in as the new user 11

OmniDB, Release 2.15.0

And we can see the window again. Note that now there is no Users icon, because the test user is not a super user. Go
ahead and click on Connections on the upper left corner. You will see a popup like this:

3.4 Creating connections

At the moment, OmniDB supports PostgreSQL, Oracle, MySQL and MariaDB. More DBMS support is being added
as you read this.

We will now create one connection to a PostgreSQL database, one connection to an Oracle database and one connection
to a MariaDB database. To create the connections you have to click on the button New Connection and then choose
the connection and fill the other fields. After filling all the fields for both connections, click on the Save Data button.

12 Chapter 3. 3. Creating Users and Connections

OmniDB, Release 2.15.0

For each connection there is an Actions column where you can delete, test and select them. Go ahead and test the
PostgreSQL connection.

Notice a pop-up appears with the message fe_sendauth: no password supplied. This is happening because OmniDB
does not store the database user password on disk. Not having any password at hand, OmniDB will try to connect
without one, thus trying to take advantage of automatic authentication methods that might be in place: trustmethod,
.pgpass file, and so on. As the database server replies with an error not allowing the user to connect, then OmniDB
understands a password is required and asks it to the user. When the user types a password in this popup, the password
is encrypted and stored in memory.

After you type the password and hit Enter, if the connection to the database is successful you will see a confirmation
pop-up.

3.4. Creating connections 13

OmniDB, Release 2.15.0

But, if you have trouble of any kind connecting to your PostgreSQL database, the same popup will remain showing
the error OmniDB got.

For Oracle, the behavior is similar. When OmniDB first tries to connect to an Oracle database without a password,
you will see a message like this:

14 Chapter 3. 3. Creating Users and Connections

OmniDB, Release 2.15.0

If you have any trouble connection to your Oracle database, the same popup will remain showing the error OmniDB
got:

MariaDB and MySQL databases also works in the same way. First time, no password was given:

3.4. Creating connections 15

OmniDB, Release 2.15.0

But if you have any problems, such as database server down:

Finally, in the connections grid, if you click on the Select Connection action, OmniDB will open it in a new Connection
Outer Tab as we can see in the next chapter.

3.5 Using SSH tunnels

Starting from 2.8, OmniDB allows the user to connect to any remote database through SSH tunnels. The user needs to
fill SSH tunnel information in each connection in the Connections Grid.

16 Chapter 3. 3. Creating Users and Connections

OmniDB, Release 2.15.0

• SSH Server: The server you are connecting to via SSH;

• SSH Port: The port of the SSH server (default is 22, but it can be any port number);

• SSH User: The operating system user name you use to connect to the SSH server;

• SSH Password: The password of the operating system user. If you fill the field SSH Key, then this is optional;

• SSH Key: The contents of the local private SSH key you can use to connect to the SSH server. If you fill this
field, then you can also fill the field SSH Password, but in this case it will be the password for the SSH private
key.

Please note that all information is stored encrypted in your local OmniDB User Database.

While using SSH tunnels, you also need to fill all database fields accordingly. But instead of being relative to the
OmniDB server, they will be relative to the SSH Server. This can be done in 2 scenarios as explained below.

If the database is inside the same server as you are connecting to via SSH, then you will have a situation like this:

In this scenario, the database Server will be 127.0.0.1, as the database is in the same machine as the SSH Server.

But the database can be outside the SSH server, like this:

3.5. Using SSH tunnels 17

OmniDB, Release 2.15.0

Here the database Server needs to be 192.168.0.10, as it is the relative address for the SSH server to connect to
the database server.

18 Chapter 3. 3. Creating Users and Connections

CHAPTER 4

4. Managing Databases

After creating a connection you can select it by clicking in the Select Connection action in the connections grid. You
will see that the connection will be represented by a kind of outer tab called a Connection Tab. And this whole area is
called the Workspace Window.

4.1 Sections of the Workspace window

This interface has several elements:

19

OmniDB, Release 2.15.0

• 1) Connections: Opens a popup with the Connections grid

• 2) Outer Tabs: OmniDB lets you work with several databases at the same time. Each database will be accessible
through an outer tab. Outer tabs also can host miscellaneous connection-independent features, like the Snippets
feature

• 3) Options: Shows the current user logged in, and if user is a superuser, also shows a link for user management.
Also shows links for user settings, installed plugins, query history, information and logout.

4.2 Connection Outer Tab

The outer table named PostgreSQL - testdb has this name because of the alias (PostgreSQL) we put in the connection to
the testdb database. This tab is a Connection Outer Tab. Notice the little tab with a cross besides the PostgreSQL -
testdb outer tab. This allows you to create a new outer tab that will automatically be a Connection Outer Tab. However,
the Snippet Outer Tab is fixed and will always be the first.

A new Connection Outer Tab will always automatically point to the first connection on your list of database connec-
tions. Or, if you clicked on the Select Connection action, it will point to the selected connection. Observe the elements
inside of this tab:

• 1) Connection Selector: Shows all connections and lets the user select the current one

• 2) Tree of Structures: Displays a hierarchical tree where you can navigate through the database elements

• 3) Properties and DDL Panels: Display Properties and DDL about the currently selected node in the tree view

• 4) Inner Tabs: Allows the user to execute actions in the current database. There are several kinds of inner tabs
for the current database. By clicking on the last small tab with a cross, you can add a new tab. A new tab can be

20 Chapter 4. 4. Managing Databases

OmniDB, Release 2.15.0

a Query Tab, Console Tab, Monitoring Dashboard or Backends

• 5) Inner Tab Content: Can vary depending on the kind of inner tab. The figure shows a Query Tab and in this
case the content will be an SQL Editor, with syntax highlight, autocomplete and find & replace

• 6) Inner Tab Actions: Can vary depending on the kind of inner tab. For a Query Tab, they are Run, Indent SQL,
Command History, Explain, Explain Analyze, Autocommit and Export to File

• 7) Inner Tab Results: A Query Tab, after you click in the Execute Button or type the run shortcut (Alt-Q),
will show a grid with the query results in the Data subtab. If the query calls a function that raises messages,
those will be shown in the Messages subtab. If instead of Run you clicked in Explain or Explain Analyze, the
explain plan for the query will be shown in the Explain subtab.

4.3 Working with databases

Take a look at your connections selector. OmniDB always points to the first available connection but you can change
it by clicking on the selector.

4.3. Working with databases 21

OmniDB, Release 2.15.0

Select the PostgreSQL connection. Now go to the tree right below the selector and click to expand the root node
PostgreSQL.

Bear in mind that every 30 minutes you keep without performing actions on the database, will trigger an Authentication
popup, meaning that the password that OmniDB has encrypted and stored in memory is now expired. As explained
before, this is important for your database security. After you type the correct password, you will see the PostgreSQL
node now shows the PostgreSQL version and also was expanded, showing the current database connection and also
instance wide elements: Databases, Tablespaces, Roles and Replication Slots.

You can connect to a single PostgreSQL database, and using the same connection you can connect to other databases
in the same PostgreSQL instance. The currently active database will be indicated below the connection selector.

22 Chapter 4. 4. Managing Databases

OmniDB, Release 2.15.0

To connect to a different database, expand the node corresponding to that database. A popup will appear asking if you
really want to change the active database.

Click on Yes and OmniDB will change the active database to the database you choose. It will be reflected on the Active

4.3. Working with databases 23

OmniDB, Release 2.15.0

database indicator, and also on the outer tab name.

Go ahead and expand the Schemas node. You will see all schemas in the current database (in case of PostgreSQL,
TOAST and temp schemas are not shown).

24 Chapter 4. 4. Managing Databases

OmniDB, Release 2.15.0

Now click to expand the schema public. You will see different kinds of elements contained in this schema.

4.3. Working with databases 25

OmniDB, Release 2.15.0

Now click to expand the node Tables, and you will see all tables contained in the schema public. Expand any table
and you will see its columns, primary key, foreign keys, constraints, indexes, rules, triggers and partitions.

26 Chapter 4. 4. Managing Databases

OmniDB, Release 2.15.0

In order to view records inside a table, right click it and choose *Data Actions

4.3. Working with databases 27

OmniDB, Release 2.15.0

Query Data*.

Notice that OmniDB opens a new SQL editor with a simple query to list table records. The records are displayed in
a grid right below the editor. This grid can be controlled with keyboard as if you were using a spreadsheet manager.
You can also copy data from single cells or block of cells (that can be selected with the keyboard or mouse) and paste
on any spreadsheet manager.

28 Chapter 4. 4. Managing Databases

OmniDB, Release 2.15.0

You can edit the query on the SQL editor, writing simple or more complex queries. To execute, click on the action
button or hit the keystroke Alt-Q. If the results exceed 50 registers, then extra buttons Fetch More and Fetch All will
appear. More details in the next chapters.

4.4 Working with multiple tabs inside the same connection

Inside a single connection, you can create several inner query tabs by clicking on the last little tab with a cross, and
then choosing Query Tab.

4.4. Working with multiple tabs inside the same connection 29

OmniDB, Release 2.15.0

On OmniDB, you can execute several SQL statements and procedures in parallel. When it is executing, an icon will
be shown in the tab to indicate its current state. If some process is finished and it is not in the current tab, that tab will
show a green icon indicating the routine being executed there is now finished.

By clicking in the Cancel button, you can cancel a process running inside the database.

30 Chapter 4. 4. Managing Databases

OmniDB, Release 2.15.0

You can also drag and drop a tab to change its order. This works with both inner and outer tabs.

Additionally, you can use keyboard shortcuts to manage inner tabs (SQL Query) and outer tabs (Connection):

• Ctrl-Insert: Insert a new inner tab

• Ctrl-Delete: Removes an inner tab

• Ctrl-<: Change focus to inner tab at left

• Ctrl->: Change focus to inner tab at right

4.4. Working with multiple tabs inside the same connection 31

OmniDB, Release 2.15.0

• Ctrl-Shift-Insert: Insert a new outer tab

• Ctrl-Shift-Delete: Removes an outer tab

• Ctrl-Shift-<: Change focus to outer tab at left

• Ctrl-Shift->: Change focus to outer tab at right

Starting from OmniDB version 2.3.0, all SQL Query tabs are automatically saved whenever you execute them. Even
if you close OmniDB window or browser tab, they are already stored in OmniDB User Database. They will be
automatically restored when you open OmniDB again (if you are using app), open it in another browser window (if
you are using server), or even if you clicked in the Connections window or logged out. Removing an outer tab or inner
tab by the interface makes it permanently deleted, so it will not be restored.

32 Chapter 4. 4. Managing Databases

CHAPTER 5

5. Creating, Changing and Removing Tables

5.1 Creating tables

OmniDB has a table creation interface that lets you configure columns, constraints and indexes. A couple of observa-
tions should be mentioned:

• Most DBMS automatically create indexes when primary keys and unique constraints are created. Because of
that, the indexes tab is only available after creating the table.

• Each DBMS has its unique characteristics and limitations regarding table creation and the OmniDB interface
reflects these limitations. For instance, SQLite does not allow us to change existing columns and constraints.
Because of that, the interface lets us change only table name and add new columns when dealing with SQLite
databases (it is still not the case in OmniDB Python version, as it currently supports only PostgreSQL databases).

We will create example tables (customers and addresses) in the testdb database we connected to earlier. Right click
on the Tables node and select the Create Table (GUI) action:

33

OmniDB, Release 2.15.0

We will create the table customers with a primary key that will be referenced by the table addresses:

34 Chapter 5. 5. Creating, Changing and Removing Tables

OmniDB, Release 2.15.0

Click on the Save Changes button. Right-click the Tables tree node and click Refresh. Note how the table appers in
the Tables tree node:

By keeping the table customers selected in the treeview, check its properties and DDL:

5.1. Creating tables 35

OmniDB, Release 2.15.0

36 Chapter 5. 5. Creating, Changing and Removing Tables

OmniDB, Release 2.15.0

Now create the table addresses with a primary key and a foreign key:

5.1. Creating tables 37

OmniDB, Release 2.15.0

Don’t forget to click on the Save Changes button when done. At this point we have two tables in schema public.
The schema structure can be seen with the graph feature by right clicking on the schema public node of the tree and
selecting Render Graph > Simple Graph:

38 Chapter 5. 5. Creating, Changing and Removing Tables

OmniDB, Release 2.15.0

And this is what the Complete Graph looks like:

5.1. Creating tables 39

OmniDB, Release 2.15.0

5.2 Editing tables

OmniDB also lets you edit existing tables (always following DBMS limitations). To test this feature we will add a new
column to the table customers. To access the alter table interface just right click the table node and select the action
Table Actions > Alter Table:

40 Chapter 5. 5. Creating, Changing and Removing Tables

OmniDB, Release 2.15.0

Add the column cust_age and save:

The interface is capable of detecting errors that may occur during alter table operations, showing the command and the

5.2. Editing tables 41

OmniDB, Release 2.15.0

error that occurred. To demonstrate it we will try to add the column cust_name, which already belongs to this table:

5.3 Removing tables

In order to remove a table just right click the table node and select the action Table Actions > Drop Table:

42 Chapter 5. 5. Creating, Changing and Removing Tables

CHAPTER 6

6. Managing Table Data

The tool allows us to edit records contained in tables through a very simple and intuitive interface. Given that only a
few DBMS have unique identifiers for table records, we opted to allow data editing and removal only for tables that
have a primary key. Tables that do not have it can only receive new records.

To access the record editing interface, right click the table node and select the action Data Actions > Edit Data:

43

OmniDB, Release 2.15.0

44 Chapter 6. 6. Managing Table Data

OmniDB, Release 2.15.0

The interface has a SQL editor where you can filter and order records. To prevent that the interface requests too many
records, there is a field that limits the number of records to be displayed. The records grid has column names and data
types. Columns that belong to the primary key have a key icon next to their names.

The row of the grid that have the symbol + is the row to add new records. Let us insert some records in the table
customers:

45

OmniDB, Release 2.15.0

After saving, the records will be inserted and can be edited (only because this table has a primary key). Let’s change
the cust_name of some of the existing records and, at the same time, let’s remove one of the rows:

46 Chapter 6. 6. Managing Table Data

OmniDB, Release 2.15.0

Tables can have fields with values represented by very long strings. To help edit these fields, OmniDB has an interface
that can be accessed by right clicking the specific cell:

47

OmniDB, Release 2.15.0

The interface detects errors that may occur during operations related to records. To demonstrate, let us insert two

48 Chapter 6. 6. Managing Table Data

OmniDB, Release 2.15.0

records with existing cust_id (primary key):

It shows which commands tried to be executed and the respective errors.

To complete this chapter, let’s add some records to the Address table:

49

OmniDB, Release 2.15.0

50 Chapter 6. 6. Managing Table Data

CHAPTER 7

7. Writing SQL Queries

The most common kind of inner tab is the Query Tab, containing the following elements:

51

OmniDB, Release 2.15.0

• 1) Tab Header: You can see the name of the tab and an icon to close it. If there is a query running in the tab,
you will see an indicator. If the tab finishes running and you are working on a different tab, a green indicator
you be shown. By double-clicking on the tab name, you will be able to rename the tab.

• 2) Add Tab: You can quickly add another inner tab by clicking on the plus icon.

• 3) SQL Editor: Full-featured SQL editor with SQL syntax highlighting, Find & Replace (Ctrl-F and
Ctrl-H) and an autocomplete component, explained below.

• 4) Execute: The text contained in the SQL Editor will be executed against the current active database when you
click on this button (or hit the shortcut , Alt-Q by default). If there is some selected text in the SQL Editor, it
will execute only the selected text. Once the command is running, a red Cancel button will be shown, allowing
you to cancel the execution (or using the shortcut, Alt-C by default).

• 5) Indent SQL: This button will prettify any SQL code written in the SQL editor (shortcut Alt-D by default).

• 6) Query History: All commands executed against the current database are stored in the Query History, which
can be accessed by clicking on this button. You also will be able to filter by date and text to find a SQL command
you need.

• 7) Explain (PostgreSQL only): Call your SQL query against PostgreSQL by putting EXPLAIN in front of it.
The results will be shown in a textual and graphical form in the Explain tab (please see Chapter 8 for more
details).

• 8) Explain Analyze (PostgreSQL only): Same as Explain button, but call the SQL query with EXPLAIN
ANALYZE, which will effectively execute the query.

52 Chapter 7. 7. Writing SQL Queries

OmniDB, Release 2.15.0

• 9) Autocommit (PostgreSQL only): When enabled, every query executed will be commited to the database.
When disabled, OmniDB starts a transaction and upon execution of a query, the interface will show buttons
allowing the user to Commit or Rollback. The user can also keep the transaction open and execute other com-
mands.

• 10) Backend Status (PostgreSQL only): When you open a new Query Tab, the status is “Not Connected”,
because OmniDB didn’t start a PostgreSQL backend yet. When you execute the first query, OmniDB starts a
new backend and keep it linked to the Query Tab (each Query Tab will be assigned its own backend). The status
of the backend (idle, active, idle in transaction, etc) will be shown in this field. When you close the Query Tab,
OmniDB terminates the backend.

• 11) Export File Type: Can be either CSV or XLSX.

• 12) Export To File: By clicking on this button, OmniDB executes the current query and saves it to a file in
OmniDB’s temp folder. After the file is saved, the interface allows the user to download it.

• 13) Data Results: If the query is a SELECT, then it will show a grid with the results. If the query is a DML or
DDL, it will show the message returned by the RDBMS.

• 14) Messages (PostgreSQL only): Any messages (such as the ones given by the command RAISE NOTICE)
will be shown here.

• 15) Explain View (PostgreSQL only): Shows a full-featured component to view the PostgreSQL execution
plan in textual or graphical form.

Once executed, the tabs are also saved in OmniDB user database (title and contents), so the next time you open
OmniDB, you will see them all open. Also, every command you execute in a Query Tab is saved to your Query
History and to the omnidb.log file too.

7.1 SQL Autocomplete

The SQL editor has a feature that helps a lot when creating new queries: SQL code completion. With this feature it is
possible to autocomplete columns contained in a table referenced by an alias. To open the autocomplete interface you
just have to type the alias, the character . and then hit Ctrl-Space:

7.1. SQL Autocomplete 53

OmniDB, Release 2.15.0

If the user does not start the autocomplete with the cursor close to a table alias, the component will show multiple
categories of data. By typing in the filter textbox, elements in all categories will be filtered:

54 Chapter 7. 7. Writing SQL Queries

OmniDB, Release 2.15.0

The autocomplete component is also able to identify some contextual information. For example, if you type a name
of a schema, then type the character ., then hit Ctrl-Space, you will be able to filter among objects contained only
in that schema:

7.1. SQL Autocomplete 55

OmniDB, Release 2.15.0

Please note that for RDBMS other than PostgreSQL, the autocomplete component only works for table columns.

56 Chapter 7. 7. Writing SQL Queries

CHAPTER 8

8. Visualizing Query Plans

OmniDB 2.2.0 introduced a very useful feature: graphical query plan visualization. This may come in handy when
writing or optimizing queries, since it allows you to easily identify performance bottlenecks in your SQL query.

For this feature, SQL Query inner tab shows 2 buttons: Explain and Explain Analyze.

8.1 Textual visualization

When you click the Explain button, OmniDB will execute an EXPLAIN command in your query. Initial visualization
is textual and will show exactly the output of the EXPLAIN command, but with colored bars representing the estimated
cost. The higher the cost, the darker and wider the bar.

57

OmniDB, Release 2.15.0

When you click the Explain Analyze button, OmniDB will execute an EXPLAIN ANALYZE command in your query.
Beware that this command will really execute the query. Also, the textual visualization will show much more infor-
mation, and the costs are not estimated as in those provided by the EXPLAIN command; they are real costs.

58 Chapter 8. 8. Visualizing Query Plans

OmniDB, Release 2.15.0

8.2 Tree visualization

Both Explain and Explain Analyze modes also can graphically represent the textual output into a tree diagram. Each
circle represent a node executed by the query plan, and the larger the circle, the higher the cost.

8.2. Tree visualization 59

OmniDB, Release 2.15.0

When queries become more and more complex, also its query plan can be very complex. With such queries (like the
check bloat query we executed below) the tree visualization can be very interesting:

60 Chapter 8. 8. Visualizing Query Plans

OmniDB, Release 2.15.0

The query plan visualization component allows you to easily switch between textual and 2 tree visualizations, which
can be zoomed in and out.

8.2. Tree visualization 61

OmniDB, Release 2.15.0

62 Chapter 8. 8. Visualizing Query Plans

CHAPTER 9

9. Visualizing Data

This feature displays a graph with nodes representing tables and edges representing table relationships with foreign
keys. Using the mouse, the user is able to zoom in, zoom out, and drag and drop nodes to change its position.

There are two types of graphs: Simple Graph and Complete Graph.

9.1 Simple graph

This one display simple table nodes and their relationships. To access it just right click the schema node you want in
the tree and then select the action Render Graph > Simple Graph:

63

OmniDB, Release 2.15.0

64 Chapter 9. 9. Visualizing Data

OmniDB, Release 2.15.0

9.2 Complete graph

This graph displays tables with all its columns and respective data types. To access it just right click the schema you
want in the tree and then select the action Render Graph > Complete Graph:

9.2. Complete graph 65

OmniDB, Release 2.15.0

66 Chapter 9. 9. Visualizing Data

CHAPTER 10

10. Managing other Elements

All PostgreSQL structures are possible to be managed with the use of SQL templates. This gives the user more power
than using graphical forms to manipulate structures.

For example, let’s consider the sequences inside the schema public of the database ds2. To create a new sequence,
right click on the Sequences node, and choose Create Sequence.

67

OmniDB, Release 2.15.0

68 Chapter 10. 10. Managing other Elements

OmniDB, Release 2.15.0

After you change the name of the sequence, you can uncomment other command options and set them accordingly to
your needs. When the entire command looks fine, just execute it and the new sequence will be created:

With right click on an existing sequence, you can alter or drop it. It will work the same way as the creation, by using
a SQL template for the user to change.

69

OmniDB, Release 2.15.0

70 Chapter 10. 10. Managing other Elements

OmniDB, Release 2.15.0

71

OmniDB, Release 2.15.0

72 Chapter 10. 10. Managing other Elements

CHAPTER 11

11. Additional Features

11.1 User Settings

Also in the upper right corner, by clicking in the gear-like icon, OmniDB will open the User Settings pop-up. It is
composed by three tabs:

• Shortcuts: Allows the user to change its shortcuts in OmniDB.

73

OmniDB, Release 2.15.0

• User Options: Allows the user to change the font size of the SQL Editor, change the entire OmniDB theme
and configurate CSV related options. There are a lot of OmniDB themes, each of them also change the syntax
highlight color of the editor. They are also categorized in light and dark themes. A light theme is the default; a
dark theme will change the entire interface of OmniDB.

74 Chapter 11. 11. Additional Features

OmniDB, Release 2.15.0

• Password: Allows the user to change its password.

11.2 Contextual Help

Most of tree nodes (generally grouping ones like Schemas or Tables) offer contextual help. This feature can be accessed
by right-clicking the tree node. When you click in the Doc: . . . option, OmniDB will open an inner tab showing a web
browser pointing to the specific page in the online PostgreSQL Documentation. Also, it will redirect to the specific
page considering the PostgreSQL version you are connected to.

11.3 Snippets

Workspace Window has a fixed outer tab with an useful feature called Snippets. With this feature you can store queries,
command instructions and any other kinds of text you want. You can also structure the snippets in a directory tree
the way you want. All directories and snippets you create are stored inside of omnidb.db user database and persist
when you upgrade OmniDB.

11.2. Contextual Help 75

OmniDB, Release 2.15.0

11.4 Backend Management

By right-clicking in the tree root node, then moving mouse pointer to Monitoring and then clicking on Backends, the
user can see all activities going on in the database. Some information are hidden for normal users, only database
superusers are allowed to see.

By clicking in the X in the Actions column, you can terminate the backend. A confirmation popup will appear.

76 Chapter 11. 11. Additional Features

OmniDB, Release 2.15.0

11.5 Properties and DDL

By clicking on most of objects in the tree view (tables, sequences, views, roles, databases, etc), the user will be able
to see a very comprehensive list of properties of the object.

In the other panel called DDL, the user will be able to see the SQL DDL source code that can be used to re-create the
object. The user can copy this text and paste it wherever he/she wants.

11.5. Properties and DDL 77

OmniDB, Release 2.15.0

11.6 Export Data

The Query Tab provides a way to save data from query results into a CSV or XLSX file. Once you click the Export
Data button, a cancellable backend starts to save data into the file. Once it is done, OmniDB provides a link called
Save, so the user can download the file.

78 Chapter 11. 11. Additional Features

OmniDB, Release 2.15.0

All files are stored in a temporary folder inside OmniDB folder. OmniDB regularly cleans this folder, keeping only
files newer than 24 hours.

11.7 Query History

From the Query Tab you can click on the Command History button to see a full, browsable and searchable query tab.

11.7. Query History 79

OmniDB, Release 2.15.0

11.8 SSH Console

OmniDB also provides a full-featured SSH Console.

80 Chapter 11. 11. Additional Features

CHAPTER 12

12. OmniDB Config Tool

Every installation of OmniDB also comes with a small CLI utility called OmniDB Config. It will have a different file
name, depending on the way you installed OmniDB:

• If you are using a tarball or zip package, it is called omnidb-config, for both server and app versions;

• If you used an installer (like the .deb file) of server version, it is called omnidb-config-server;

• If you used an installer of app version, it is called omnidb-config-app.

Despite having different names, the utility does exactly the same. If you used an installer, it will be put in your $PATH.

user@machine:~$ omnidb-config-app --help
Usage: omnidb-config-app [options]

Options:
--version show program\'s version number and exit
-h, --help show this help message and exit
-d HOMEDIR, --homedir=HOMEDIR

home directory containing local databases config and
log files

-c username password, --createsuperuser=username password
create super user: -c username password

-a, --vacuum databases maintenance
-r, --resetdatabase reset user and session databases
-t, --deletetemp delete temporary files

12.1 Set home directory

Option -d allows you to set the path to the OmniDB folder that contains the config and database files where you want
to execute other options, like creating a new super user (-c).

81

OmniDB, Release 2.15.0

12.2 Create super user

Option -c allows you to create a new super user, without needing to open OmniDB interface.

user@machine:~$ omnidb-config-app -c william password
Creating superuser...
Superuser created.

12.3 Vacuum

OmniDB has two databases:

• omnidb.db: Stores all users and connections, and other OmniDB related stuff;

• Sessions database: Stores Django user sessions.

Both databases are SQLite, so it can be useful to vacuum them sometimes to reduce file size. This can be done with
the -a option.

user@machine:~$ omnidb-config-app -a
Vacuuming OmniDB database...
Done.
Vacuuming Sessions database...
Done.

12.4 Reset database

If you wish to wipe out all OmniDB information and get a clean database as it was just installed, you can use the -r
option. Use it with caution!

user@machine:~$ omnidb-config-app -r

*** ATENTION *** ALL USERS DATA WILL BE LOST
Would you like to continue? (y/n) y
Cleaning users...
Done.
Cleaning sessions...
Vacuuming OmniDB database...
Done.
Vacuuming Sessions database...
Done.

12.5 Delete temporary files

If you desire to remove temporary files that OmniDB creates along its execution, like exported queries in CSV/XLSX
format, you can use the -t option.

user@machine:~$ omnidb-config-app -t
Cleaning temp folder...
Done.

82 Chapter 12. 12. OmniDB Config Tool

CHAPTER 13

13. Writing and Debugging PL/pgSQL Functions

13.1 Introduction

PostgreSQL is more than a RDBMS engine. It is a developing platform. It provides a very powerful and flexible
programming language called PL/pgSQL. Using this language you can write your own user-defined functions to
achieve abstraction levels and procedural calculations that would be difficult to achieve with plain SQL (and sometimes
impossible to achieve without context-switching with the application). While you always could develop and manage
your own functions within OmniDB, it is a recent feature that allows you to also debug your own functions.

OmniDB 2.3.0 introduced this great feature: a debugger for PL/pgSQL functions. It was implemented by scratch
and takes advantage of hooks, an extensibility in PostgreSQL’s source code that allows us to perform custom actions
when specific events are triggered in the database. For the debugger we use hooks that are triggered when PL/pgSQL
functions are called, and each statement is executed.

This requires the user to install a binary library called omnidb_plugin and enable it in PostgreSQL’s config file.
The debugger also uses a special schema with special tables to control the whole debugging process. This can be
manually created or with an extension.

For more details on the installation, please refer to the instructions, also available in Chapter 23. Also please read the
notes in this document, to be aware that currently there are some limitations.

After successfully installing the debugger, you will see a schema called omnidb in your database. Also, if you
compiled the debugger yourself, you can install it as a PostgreSQL extension, and in this case it will appear under the
Extensions tree node.

83

https://github.com/OmniDB/OmniDB/blob/master/omnidb_plugin/README

OmniDB, Release 2.15.0

13.2 Writing functions

In the public schema, right-click the Functions node and click on Create Function. It will open a SQL Query
inner tab, already containing a SQL Template to help you create your first PL/pgSQL function.

84 Chapter 13. 13. Writing and Debugging PL/pgSQL Functions

OmniDB, Release 2.15.0

You can refer to PostgreSQL documentation on how to write user-defined functions. No need to open a new browser
tab: just right-click the Functions node and click on Doc: Functions to view the documentation inside OmniDB.

For now, let us replace this SQL template entirely for the source code below:

13.2. Writing functions 85

OmniDB, Release 2.15.0

CREATE OR REPLACE FUNCTION public.fnc_count_vowels (p_input text)
RETURNS integer LANGUAGE plpgsql AS
$function$
DECLARE

str text;
ret integer;
i integer;
len integer;
tmp text;

BEGIN
str := upper(p_input);
ret := 0;
i := 1;
len := length(p_input);
WHILE i <= len LOOP
IF substr(str, i, 1) in ('A', 'E', 'I', 'O', 'U') THEN

SELECT pg_sleep(1) INTO tmp;
ret := ret + 1;

END IF;
i := i + 1;

END LOOP;
RETURN ret;

END;
$function$

This will create a function called fnc_count_vowels inside the schema public. This function takes a text
argument called p_input and counts how many vowels there are in this string. Then returns this count.

To create the function, execute the command in the SQL Query inner tab. If successful, the function will appear under
the Functions tree node (you can refresh it by right-clicking and then clicking in Refresh). By expanding the function
node as well, you can see its return type and its argument.

86 Chapter 13. 13. Writing and Debugging PL/pgSQL Functions

OmniDB, Release 2.15.0

Now let us execute this new function for the first time. Open a simple SQL Query inner tab and execute the following
SQL query:

SELECT public.fnc_count_vowels('The quick brown fox jumps over the lazy dog.')

Note how the query returns a single value, containing the number of vowels in the text. Note also how the
query took several seconds to finish; this is caused by the pg_sleep we put in the source code of the function
fnc_count_vowels.

By right-clicking the function node, you can see there are actions to edit, select and drop it. As you probably guessed,
each action will open SQL Query inner tabs with handy SQL templates in them. But the most interesting action right

13.2. Writing functions 87

OmniDB, Release 2.15.0

now is Debug Function. Go ahead and click it!

13.3 Debugging functions

The debugger is a specific inner tab composed of a SQL editor that will show the process step by step on top of the
function source code, and 5 tabs to manage and view different parts of the debugger.

88 Chapter 13. 13. Writing and Debugging PL/pgSQL Functions

OmniDB, Release 2.15.0

• Parameters: Before the debugging process starts, the user must provide all the parameters in this tab. Parame-
ters must be provided exactly the same way you would provide them if you were executing the function in plain
SQL, quoting strings for instance;

• Variables: This grid displays the current value of each variable that exists in the current execution context, it
will be updated with every step;

• Result: When the function ends, this tab will show the result of the function call. It could be empty, a single
value or even a set of rows;

• Messages: Messages returned explicitly by RAISE commands or even automatic messages from PostgreSQL
will be presented in this tab;

• Statistics: At the end of the debugging process, a chart depicting execution times for each line in the function
body will be presented in this tab. Additionally, the SQL editor will be updated with a set of colors representing
a heat map, from blue to red, according to the max duration of each line.

Now let us start debugging this function. First thing to do is to fill every parameter in the Parameters tab:

13.3. Debugging functions 89

OmniDB, Release 2.15.0

Then click on the Start button. Note how OmniDB automatically goes to the Variables tab, which is the interesting
tab now that the function is being debugged. The argument p_input is now called $1, indicating the first argument
of the function. Also note the variable found, which is a PostgreSQL reserved variable that indicates whether or not
a query has returned values inside of the function.

Also note that OmniDB points to the first line of the source code of the function, highlighting it in green. This is the
line that is about to be executed.

90 Chapter 13. 13. Writing and Debugging PL/pgSQL Functions

OmniDB, Release 2.15.0

Now click in the first button below the SQL editor. It is the Step Over button, and it means that OmniDB will execute
the next statement and stop right after it.

13.3. Debugging functions 91

OmniDB, Release 2.15.0

Note how the variable str has the value assigned to it during execution of line 9. Right now OmniDB is about to
execute line 10, showing the current execution state.

Now that you know how to step over, let us speed up things a little bit. Click on the header of the line 20, the last line
of code. By doing this, you just placed a breakpoint. The debugger interface allows you to place one breakpoint at a
time.

92 Chapter 13. 13. Writing and Debugging PL/pgSQL Functions

OmniDB, Release 2.15.0

After setting a breakpoint, you can click in the second button, Resume. OmniDB will carry on with the debugging
process until it reaches the line of code with the breakpoint. This may take a while because of the pg_sleep
commands we put in the source code. Note that if you click this button without previously setting a breakpoint,
OmniDB will execute the entire function to the end.

13.3. Debugging functions 93

OmniDB, Release 2.15.0

Observe the values for each variable. We can see that the value of ret is 11 even before the function finishes. Also
note that OmniDB does not remove the breakpoint you placed. To do that, you can click in the breakpoint little icon.
Now hit Resume again. Let us see now what happens when the function finishes.

94 Chapter 13. 13. Writing and Debugging PL/pgSQL Functions

OmniDB, Release 2.15.0

OmniDB will go automatically to the Statistics tab, which shows 2 interesting features:

• Sum of Duration per Line of Code Chart: in the bottom, a chart represents total duration of the function dis-
tributed in the lines of code. With this chart, you can easily spot bottlenecks in your code. In our example, it
was line 15, which we deliberately put a pg_sleep(1) call;

• Colored lines of source code: OmniDB colors the lines accordingly to the numbers seen in the chart. Colors
vary from blue (small duration), passing through yellow (medium duration) until red (high duration), as in a
temperature diagram.

Also note the Total duration message, which shows execution time of the function, without considering the time you
spent analyzing it.

13.4 Inspecting record attribute values

An interesting feature that we do not usually see in other debuggers is the ability to inspect each attribute of a variable
of type record. OmniDB debugger does that as it is split into different variables, allowing you to see the value and
type of each attribute.

To illustrate that, let us create another function, similar to the previous one, but now called fnc_count_vowels2:

CREATE OR REPLACE FUNCTION public.fnc_count_vowels2 (p_input text)
RETURNS integer LANGUAGE plpgsql AS
$function$
DECLARE

str text;
i integer;
len integer;
rec record;

BEGIN
str := upper(p_input);
i := 1;
len := length(p_input);
SELECT 0 AS a, 0 AS e, 0 AS i, 0 AS o, 0 AS u INTO rec;

(continues on next page)

13.4. Inspecting record attribute values 95

OmniDB, Release 2.15.0

(continued from previous page)

WHILE i <= len LOOP
CASE substr(str, i, 1)

WHEN 'A' then rec.a := rec.a + 1;
WHEN 'E' then rec.e := rec.e + 1;
WHEN 'I' then rec.i := rec.i + 1;
WHEN 'O' then rec.o := rec.o + 1;
WHEN 'U' then rec.u := rec.u + 1;
ELSE NULL;

END CASE;
i := i + 1;

END LOOP;
RETURN rec.a + rec.e + rec.i + rec.o + rec.u;

END;
$function$

Observe how we keep track of every vowel count individually. Now let us start debugging it, using the same text as
before ('The quick brown fox jumps over the lazy dog.'):

96 Chapter 13. 13. Writing and Debugging PL/pgSQL Functions

OmniDB, Release 2.15.0

Note from the picture above that PostgreSQL created an internal Case Variable. Also note that the variable rec is not
shown in the list of known variables. This is because PostgreSQL still does not know what attributes rec will contain.
Let’s step over some more steps.

13.4. Inspecting record attribute values 97

OmniDB, Release 2.15.0

Right after the execution of line 11, rec variable comes to life and we can see it has 5 attributes: a, e, i, o and u, all
of the type int and having initial value 0.

Now set a breakpoint in line 23 and click the Resume button.

See how we can inspect every attribute, observing how many of each vowel the text contain. Now let’s finish this
function.

98 Chapter 13. 13. Writing and Debugging PL/pgSQL Functions

OmniDB, Release 2.15.0

13.4. Inspecting record attribute values 99

OmniDB, Release 2.15.0

100 Chapter 13. 13. Writing and Debugging PL/pgSQL Functions

CHAPTER 14

14. Monitoring Dashboard

OmniDB 2.4.0 introduced a new cool feature called Monitoring Dashboard. We know a picture is worth a thousand
words, so please take a look:

As you can see, this is a new kind of inner tab showing some charts and grids. This Monitoring inner tab is automati-
cally opened once you expand the tree root node (the PostgreSQL node). You can keep it open or close it at any time.
To open it again, right-click the root node and click on Dashboard.

101

OmniDB, Release 2.15.0

The dashboard is composed of handy information rectangles called Monitoring Units. Here is an example of Monitor-
ing Unit and its interface elements:

102 Chapter 14. 14. Monitoring Dashboard

OmniDB, Release 2.15.0

• 1: Title of the Monitoring Unit;

• 2: Refresh the Monitoring Unit. Depending on the type, clicking on this button will refresh the entire drawing
area or just make the chart acquire a new set of values;

• 3: Pause the Monitoring Unit;

• 4: Interval in seconds for automatic refreshing;

• 5: Remove the Monitoring Unit of the Monitoring Dashboard;

• 6: Drawing area, that will be different depending on the type of the Monitoring Unit.

14.1 Types of Monitoring Units

Currently there are 3 types of Monitoring Units:

• Grid: The most simple kind, just executes a query from time to time and shows the results in a data grid.

• Chart: Every time it refreshes, it renders a new complete chart. The old set of values is lost. This is most useful
for pie charts, but other kind of charts can be used too.

14.1. Types of Monitoring Units 103

OmniDB, Release 2.15.0

• Chart-Append: Perhaps this is the most useful kind of Monitoring Unit. It is a chart that appends a new set of
values every time it refreshes. Line or bar charts fit best for this type. The last 50 set of values are kept by the
component client-side to be viewed by the user.

14.2 Showing and hiding units in the dashboard

If you click in the button Refresh All, then all Monitoring Units will be refreshed at once. You can also remove
undesired Monitoring Units by clicking in the Remove button. Let us go ahead and remove all units from the dashboard,
making it empty:

104 Chapter 14. 14. Monitoring Dashboard

OmniDB, Release 2.15.0

All Monitoring Units that come with OmniDB are open source and available in this repository (feel free to contribute).
But be aware that some Monitoring Units require the plpythonu script to be installed in the database. Please refer
to the instructions specific to your operating system on how to install plpythonu if you desire to use and create
Monitoring Units that use plpythonu.

14.2. Showing and hiding units in the dashboard 105

https://github.com/OmniDB/monitors

OmniDB, Release 2.15.0

Now that our dashboard is empty, let us add some units. Click on the Manage Units button.

106 Chapter 14. 14. Monitoring Dashboard

OmniDB, Release 2.15.0

Click on the green action to add the Monitoring Units called CPU Usage and Memory Usage. Bear in mind that
both units require plpythonu extension in the database. CPU Usage also requires that the tool mpstat should be
installed in the server. Also both units are of type Chart-Append. Wait for some seconds and you will have a dashboard
like this:

In a similar way, you can add and remove any unit you want to customize the dashboard the way you want.

14.3 Writing custom Monitoring Units: Grid

OmniDB provides you the power to write your own units and customize existing ones. Everything is done through
Python scripts that run inside a sandbox. Beware that units powered by plpythonu can have access to the file
system the database user also has access to, and any Monitoring Unit have the same permission as the database user
you configured in the Connection.

14.3. Writing custom Monitoring Units: Grid 107

OmniDB, Release 2.15.0

To create a new Monitoring Unit, click on the Manage Units button in the dashboard, then click on the New Unit
button. It will open a new kind of inner tab like this:

The easiest way to write a custom unit is to use an existing one as template. Go ahead and select the (Grid) Activity
template:

Note how OmniDB fills the Data Script source code. This script is responsible for generating data for the unit every
time it refreshes. As a grid unit is nothing else but a grid of data, we can rely on only this script for now.

Now let us take a look at the source code of this template:

from datetime import datetime

data = connection.Query('''
SELECT *
FROM pg_stat_activity

''')
(continues on next page)

108 Chapter 14. 14. Monitoring Dashboard

OmniDB, Release 2.15.0

(continued from previous page)

result = {
"columns": data.Columns,
"data": data.Rows

}

It is simple enough. It executes an SQL query into the current connection using the reserved connection variable.
Also, the grid unit type expects its results in a JSON variable that must be called result and must have the attributes
"columns" (an array of column names) and "data" (an array of rows, each row being an array of values). The
connection.Query() function already does the job pretty well, so let us just change the SQL query this way:

from datetime import datetime

data = connection.Query('''
SELECT random() as "Random Number"

''')

result = {
"columns": data.Columns,
"data": data.Rows

}

Copy and paste the above Python code into the Data Script text field and then click on the Test (lighting) button:

Note how the grid was rendered in the preview drawing area. You can click the Test button as many times as you want.
Now we will give the unit a name, set a refresh interval and then hit the Save button:

14.3. Writing custom Monitoring Units: Grid 109

OmniDB, Release 2.15.0

Click the OK button and then close the edit tab. Our new Monitoring Unit will be in the list of available units. As
we created this unit, we can either add it to the dashboard, edit it or remove it. Let us add it to the dashboard (green
action):

14.4 Writing custom Monitoring Units: Chart

Click in the Manage Units button and then in the New Unit button. This time we will create a Chart Monitoring Unit.
So choose (Chart) Database Size as a template.

110 Chapter 14. 14. Monitoring Dashboard

OmniDB, Release 2.15.0

The source code of this kind of unit is more complex. There are two scripts:

• Data Script: Executed every time the unit is refreshed;

• Chart Script: Executed only at the beginning to build the chart.

The chart units are based in the component Chart.js and each chart type contains a specific JSON structure. The best
approach to build new chart units is to start from a template and also check the Chart.js docs to see every property that
can be added to make the output even better for each situation.

Let us take a look at the Data Script:

from datetime import datetime
from random import randint

databases = connection.Query('''
SELECT d.datname AS datname,

round(pg_catalog.pg_database_size(d.datname)/1048576.0,2) AS size
FROM pg_catalog.pg_database d
WHERE d.datname not in ('template0','template1')

''')

data = []
color = []
label = []

for db in databases.Rows:
data.append(db["size"])
color.append("rgb(" + str(randint(125, 225)) + "," + str(randint(125, 225)) + ","

→˓+ str(randint(125, 225)) + ")")
label.append(db["datname"])

result = {
"labels": label,
"datasets": [

{
"data": data,
"backgroundColor": color,
"label": "Dataset 1"

}
]

}

Here we can see that the reserved variable connection is still being used to retrieve data from the database. Bear
in mind that this variable is always pointing to the current Connection.

14.4. Writing custom Monitoring Units: Chart 111

http://www.chartjs.org/
http://www.chartjs.org/docs/latest/

OmniDB, Release 2.15.0

This template is for a Pie chart, which contains only one dataset and three arrays for the data:

• data: One value per slice;

• color: One color per slice;

• label: One label per slice.

This way, data[0], color[0] and label[0] refer to the first slice, while data[1], color[1] and
label[1] refer to the second slice, and so on.

This script must return a variable called result and also needs to be a JSON like in the above script.

So right now you are probably guessing that you just need to change the SQL query to make the chart behave different.
Well, in terms of data and datasets, you guessed right. So let’s change the SQL query of this chart to compare sizes
of tables of schema public. Also change the references from datname to tablename, as we have changed the
column name.

from datetime import datetime
from random import randint

databases = connection.Query('''
SELECT c.relname as tablename,

round(pg_catalog.pg_total_relation_size(c.oid)/1048576.0,2) AS size
FROM pg_catalog.pg_class c
INNER JOIN pg_catalog.pg_namespace n
ON n.oid = c.relnamespace
WHERE n.nspname = 'public'

AND c.relkind = 'r'
''')

data = []
color = []
label = []

for db in databases.Rows:
data.append(db["size"])
color.append("rgb(" + str(randint(125, 225)) + "," + str(randint(125, 225)) + ","

→˓+ str(randint(125, 225)) + ")")
label.append(db["tablename"])

result = {
"labels": label,
"datasets": [

{
"data": data,
"backgroundColor": color,
"label": "Dataset 1"

}
]

}

Copy and paste the above script into the Data Script field and then hit the Test button:

112 Chapter 14. 14. Monitoring Dashboard

OmniDB, Release 2.15.0

Apparently the chart is almost done. We need to fix the title, it still says Database Size, when this chart is about table
size. Any information about the format of the chart itself is defined in the Chart Script text field. Let us understand
the current source code:

total_size = connection.ExecuteScalar('''
SELECT round(sum(pg_catalog.pg_database_size(datname)/1048576.0),2)
FROM pg_catalog.pg_database
WHERE NOT datistemplate

''')

result = {
"type": "pie",
"data": None,
"options": {

"responsive": True,
"title":{

"display":True,
"text":"Database Size (Total: " + str(total_size) + ")"

}
}

}

Easy enough. We can make use of the reserved variable connection to retrieve data in the Chart Script too. This
is mainly used to put information in the chart title. The variable result must be defined here. Note how its JSON
value defines a pie chart and the title. So we just need to change the query and adjust the title, this way:

total_size = connection.ExecuteScalar('''
SELECT round(sum(pg_catalog.pg_total_relation_size(c.oid)/1048576.0),2) AS size
FROM pg_catalog.pg_class c
INNER JOIN pg_catalog.pg_namespace n
ON n.oid = c.relnamespace
WHERE n.nspname = 'public'

AND c.relkind = 'r'
''')

(continues on next page)

14.4. Writing custom Monitoring Units: Chart 113

OmniDB, Release 2.15.0

(continued from previous page)

result = {
"type": "pie",
"data": None,
"options": {

"responsive": True,
"title":{

"display":True,
"text":"Table Size (Total: " + str(total_size) + ")"

}
}

}

Copy and paste the above Python code into the Chart Script. Then click in the Test button:

Now that the chart finally works the way we want, we can give it a title, adjust the refresh interval and then click in
the Save button. After that we can add it to the dashboard.

114 Chapter 14. 14. Monitoring Dashboard

OmniDB, Release 2.15.0

14.5 Writing custom Monitoring Units: Chart-Append

Now for the last, but most interesting kind of Monitoring Unit: Chart-Append. It is interesting because there is a wide
range of applications for these units, since they keep recent historic data that allows us to see a comparison of values.

Go ahead and add a new chart using (Chart (Append)) Size: Top 5 Tables as template:

14.5. Writing custom Monitoring Units: Chart-Append 115

OmniDB, Release 2.15.0

Now take a look at the source code of both Data Script and Chart Script. It is not too different from the Chart units.
The dataset creation is a bit more complex as it involves other JSON settings, but that’s all.

As an exercise, based on this chart, create another one called Size: Top 20 Tables. It should look like this:

Now save it and add it to your dashboard:

116 Chapter 14. 14. Monitoring Dashboard

OmniDB, Release 2.15.0

14.5. Writing custom Monitoring Units: Chart-Append 117

OmniDB, Release 2.15.0

118 Chapter 14. 14. Monitoring Dashboard

CHAPTER 15

15. Logical Replication

PostgreSQL 10 introduces native logical replication, which uses a publish/subscribe model and so we can create
publications on the upstream (or publisher) and subscriptions on downstream (or subscriber). For more details about
it, please refer to the PostgreSQL documentation.

In this chapter, we will use a 2-node cluster to demonstrate PostgreSQL 10 native logical replication. Note that
on each PostgreSQL instance, you need to configure wal_level = logical and also make sure to adjust file
pg_hba.conf to grant access to replication between the 2 nodes.

15.1 Creating a test environment

OmniDB repository provides a 2-node Vagrant test environment. If you want to use it, please do the following:

git clone --depth 1 https://github.com/OmniDB/OmniDB
cd OmniDB/OmniDB_app/tests/vagrant/postgresql-10-2nodes/
vagrant up

It will take a while, but once finished, 2 virtual machines with IP addresses 10.33.2.114 and 10.33.2.115 will
be up and each of them will have PostgreSQL 10 listening to port 5432, with all settings needed to configure native
logical replication. A new database called omnidb_tests is also created on both machines. To connect, user is
omnidb and password is omnidb.

15.2 Connecting to both nodes

Let’s use OmniDB to connect to both PostgreSQL nodes. First of all, fill out connection info in the connection grid:

119

https://www.postgresql.org/docs/10/static/sql-createpublication.html
https://www.postgresql.org/docs/10/static/sql-createsubscription.html

OmniDB, Release 2.15.0

Then select both connections. Note how OmniDB understands it is connected to PostgreSQL 10 and enables a new
node in the current connection tree view: it is called Logical Replication. Inside of it, we can see Publications and
Subscriptions.

15.3 Creating a test table on both nodes

On both nodes, create a table like this:

CREATE TABLE customers (
login text PRIMARY KEY,
full_name text NOT NULL,

(continues on next page)

120 Chapter 15. 15. Logical Replication

OmniDB, Release 2.15.0

(continued from previous page)

registration_date timestamptz NOT NULL DEFAULT now()
)

15.4 Create a publication on the first machine

Inside the connection node, expand the Logical Replication node, then right click in the Publications node, and choose
the action Create Publication. OmniDB will open a SQL template tab with the CREATE PUBLICATION command
ready for you to make some adjustments and run:

After adjusting and executing the command, you can right click the Publications node again and click on the Refresh
action. You will see that will be created a new node with the same name you gave to the publication. Expanding this
node, you will see the details and the tables for the publication:

15.4. Create a publication on the first machine 121

OmniDB, Release 2.15.0

15.5 Create a subscription on the second machine

Inside the connection node, expand the Logical Replication node, then right click in the Subscriptions node, and
choose the action Create Subscription. OmniDB will open a SQL template tab with the CREATE SUBSCRIPTION
command ready for you to make some adjustments and run:

After adjusting and executing the command, you can right click the Subscriptions node again and click on the Refresh
action. You will see that will be created a new node with the same name you gave to the subscription. Expanding this

122 Chapter 15. 15. Logical Replication

OmniDB, Release 2.15.0

node, you will see the details, the referenced publications and the tables for the subscription:

Also, the CREATE SUBSCRIPTION command created a logical replication slot called testsub (the same name
as the subscription) in the first machine:

15.5. Create a subscription on the second machine 123

OmniDB, Release 2.15.0

15.6 Testing the logical replication

To test the replication is working, let’s create some data on the node 1. Right click on the table public.customers,
then point to Data Actions, then click on the action Edit Data. In this grid, you are able to add, edit and remove data
from the table. Add 2 sample rows, like this:

124 Chapter 15. 15. Logical Replication

OmniDB, Release 2.15.0

Then, on the other node, check if the table public.customers was automatically populated. Right click on the
table public.customers, then point to Data Actions, then click on the action Query Data:

15.6. Testing the logical replication 125

OmniDB, Release 2.15.0

As we can see, both rows created in the first machine were replicated into the second machine. This tell us that the
logical replication is working.

Now you can perform other actions, such as adding/removing tables to the publication and creating a new publication
that publishes all tables.

126 Chapter 15. 15. Logical Replication

CHAPTER 16

16. pglogical

pglogical is a PostgreSQL extension that provides an advanced logical replication system that serves as a highly
efficient method of replicating data as an alternative to physical replication.

In this chapter, we will use a 2-node cluster to demonstrate pglogical with PostgreSQL 10. Note that on each Post-
greSQL instance, you need to configure:

wal_level = 'logical'
track_commit_timestamp = on
max_worker_processes = 10 # one per database needed on provider node

one per node needed on subscriber node
max_replication_slots = 10 # one per node needed on provider node
max_wal_senders = 10 # one per node needed on provider node
shared_preload_libraries = 'pglogical'

Also make sure to adjust file pg_hba.conf to grant access to replication between the 2 nodes.

16.1 Creating a test environment

OmniDB repository provides a 2-node Vagrant test environment. If you want to use it, please do the following:

git clone --depth 1 https://github.com/OmniDB/OmniDB
cd OmniDB/OmniDB_app/tests/vagrant/pglogical-2-postgresql-10-2nodes/
vagrant up

It will take a while, but once finished, 2 virtual machines with IP addresses 10.33.3.114 and 10.33.3.115 will
be up and each of them will have PostgreSQL 10 listening to port 5432, with all settings needed to configure pglogical
replication. A new database called omnidb_tests is also created on both machines. To connect, user is omnidb
and password is omnidb.

127

https://www.2ndquadrant.com/en/resources/pglogical/

OmniDB, Release 2.15.0

16.2 Install OmniDB pglogical plugin

OmniDB core does not support pglogical by default. You will need to download and install pglogical plugin. If you
are using OmniDB server, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-pglogical_1.0.0.zip
unzip omnidb-pglogical_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-server/OmniDB_app/
sudo systemctl restart omnidb

And then refresh the OmniDB web page in the browser.

For OmniDB app, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-pglogical_1.0.0.zip
unzip omnidb-pglogical_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-app/resources/app/omnidb-server/OmniDB_app/

And then restart OmniDB app.

If everything worked correctly, by clicking on the “plugins” icon in the top right corner, you will see the plugin
installed and enabled:

16.3 Connecting to both nodes

Let’s use OmniDB to connect to both PostgreSQL nodes. First of all, fill out connection info in the connection grid:

Then select both connections.

16.4 Create pglogical extension in both nodes

pglogical requires an extension to be installed in both nodes. Inside OmniDB, you can create the extension by right
clicking on the Extensions node, and choosing the action Create Extension. OmniDB will open a SQL template tab

128 Chapter 16. 16. pglogical

OmniDB, Release 2.15.0

with the CREATE EXTENSION command ready for you to make some adjustments and run:

After you have created the extension, you need to refresh the root node of the treeview, by right-clicking on it and
choosing Refresh. Then you will see that OmniDB already acknowledges the existence of pglogical in this database.
However, pglogical is not active yet.

16.4. Create pglogical extension in both nodes 129

OmniDB, Release 2.15.0

16.5 Create pglogical nodes

To activate pglogical in this database, we need to create a pglogical node on each machine. Inside the pglogical node
of the treeview, right click Nodes, then choose Create Node. In the SQL template that will open, adjust the node name
and the DSN and run the command.

130 Chapter 16. 16. pglogical

OmniDB, Release 2.15.0

Then right click Nodes again, but this time choose Refresh. You will see the node you just created. Note how OmniDB
understands that this node is local. Expand the local node to see its interface inside. You can manage the interfaces of
the nodes using OmniDB too.

Go ahead and expand the Replication Sets node. You can see pglogical default replication sets are already created:
ddl_sql, default and default_insert_only. You can also manage replication sets using OmniDB.

16.5. Create pglogical nodes 131

OmniDB, Release 2.15.0

Now create a node on the other machine too. Choose a different name for the node.

16.6 Create a table on the first machine

In the first machine, under the Schemas node, expand the public node, then right-click the Tables node and choose
Create Table. In the form tab that will open, give the new table a name and some columns. Also add a primary key in
the Constraints tab. When done, click in the Save Changes button.

132 Chapter 16. 16. pglogical

OmniDB, Release 2.15.0

16.7 Add the new table to a replication set on the first machine

In the first machine, under the default_insert_only replication set, right click the Tables node and choose Add Table. In
the SQL template tab that will open, change the table name in the relation argument and then execute the command.

16.7. Add the new table to a replication set on the first machine 133

OmniDB, Release 2.15.0

Refresh the Tables node to check the table was added to the replication set.

134 Chapter 16. 16. pglogical

OmniDB, Release 2.15.0

16.8 Add a subscription on the second machine

In the second machine, right-click the Subscriptions node and choose Create Subscription. In the SQL template tab
that will open, change DSN of the first machine and then execute the command.

16.8. Add a subscription on the second machine 135

OmniDB, Release 2.15.0

Refresh and expand both Nodes and Subscriptions nodes of the treeview. Note how now the second machine knows
about the first machine. Also check the information OmniDB shows about the subscription we just created.

136 Chapter 16. 16. pglogical

OmniDB, Release 2.15.0

Also verify that the table public.test_table was created automatically in the second machine:

16.8. Add a subscription on the second machine 137

OmniDB, Release 2.15.0

16.9 Add some data in the table on the first machine

In the first machine, under the Schemas node, expand the public node and the Tables node. Right-click in our table,
test_table, move the mouse pointer to Data Actions and then click on Edit Data. Insert some data to the table. When

138 Chapter 16. 16. pglogical

OmniDB, Release 2.15.0

finished, click on the Save Changes button.

Now let us check the data was replicated. Go to the second machine and right-click the table, move the mouse pointer
to Data Actions and then click on Query Data.

16.9. Add some data in the table on the first machine 139

OmniDB, Release 2.15.0

16.10 Check if delete is being replicated

In the Edit Data tab in the first machine, remove Pete and Stuart. Click on the button Save Changes when done.

140 Chapter 16. 16. pglogical

OmniDB, Release 2.15.0

Check if these 2 rows were deleted in the second machine.

16.10. Check if delete is being replicated 141

OmniDB, Release 2.15.0

They were not removed in the second machine because the table public.test_table is in the replication set de-
fault_insert_only, that does not replicate updates and deletes.

142 Chapter 16. 16. pglogical

CHAPTER 17

17. Postgres-BDR

Postgres-BDR (or just BDR, for short) is an open source project from 2ndQuadrant that provides multi-master features
for PostgreSQL.

In this chapter, we will use a 2-node cluster to demonstrate Postgres-BDR 9.4. Note that on each PostgreSQL instance,
you need to configure:

wal_level = 'logical'
track_commit_timestamp = on
max_worker_processes = 10 # one per database needed on provider node

one per node needed on subscriber node
max_replication_slots = 10 # one per node needed on provider node
max_wal_senders = 10 # one per node needed on provider node
shared_preload_libraries = 'bdr'

Also make sure to adjust file pg_hba.conf to grant access to replication between the 2 nodes.

17.1 Creating a test environment

OmniDB repository provides a 2-node Vagrant test environment. If you want to use it, please do the following:

git clone --depth 1 https://github.com/OmniDB/OmniDB
cd OmniDB/OmniDB_app/tests/vagrant/postgresql-bdr-9.4-2nodes/
vagrant up

It will take a while, but once finished, 2 virtual machines with IP addresses 10.33.4.114 and 10.33.4.115 will
be up and each of them will have PostgreSQL 10 listening to port 5432, with all settings needed to configure BDR
multi-master replication. A new database called omnidb_tests is also created on both machines. To connect, user
is omnidb and password is omnidb.

143

https://www.2ndquadrant.com/en/resources/bdr/

OmniDB, Release 2.15.0

17.2 Install OmniDB BDR plugin

OmniDB core does not support BDR by default. You will need to download and install BDR plugin. If you are using
OmniDB server, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-bdr_1.0.0.zip
unzip omnidb-bdr_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-server/OmniDB_app/
sudo systemctl restart omnidb

And then refresh the OmniDB web page in the browser.

For OmniDB app, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-bdr_1.0.0.zip
unzip omnidb-bdr_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-app/resources/app/omnidb-server/OmniDB_app/

And then restart OmniDB app.

If everything worked correctly, by clicking on the “plugins” icon in the top right corner, you will see the plugin
installed and enabled:

17.3 Connecting to both nodes

Let’s use OmniDB to connect to both PostgreSQL nodes. First of all, fill out connection info in the connection grid:

Then select both connections.

17.4 Create required extensions

BDR requires 2 extensions to be installed on each database that should have multi-master capabilities: btree_gist
and bdr. Inside OmniDB, you can create both extensions by right clicking on the Extensions node, and choosing the

144 Chapter 17. 17. Postgres-BDR

OmniDB, Release 2.15.0

action Create Extension. OmniDB will open a SQL template tab with the CREATE EXTENSION command ready for
you to make some adjustments and run:

You need to create both extensions btree_gist and bdr on both nodes.

17.5 Create the BDR group in the first node

With both extensions installed, you can refresh the root node of the OmniDB tree view. A new BDR node will appear
just inside your database. You can expand this node to see some informations about BDR:

17.5. Create the BDR group in the first node 145

OmniDB, Release 2.15.0

As you can see, BDR is not active yet. In the first node, we need to create a BDR group. The other nodes will join this
group later.

To create a BDR group, right click in the BDR node. In the SQL template, adjust the node name and the node external
connection info (the way other nodes will use to connect to this node):

146 Chapter 17. 17. Postgres-BDR

OmniDB, Release 2.15.0

After you execute the above command, right click the BDR node and choose Refresh. You will see that now BDR is
active in this node, now called node1. If you expand Nodes, you will see that this BDR group has only 1 node:

17.5. Create the BDR group in the first node 147

OmniDB, Release 2.15.0

17.6 Join the BDR group in the second node

Now let’s move to the other node. You can see that BDR is installed but not active yet. To link the two nodes, we will
need to make this node join the BDR group that was previously created in the first node:

148 Chapter 17. 17. Postgres-BDR

OmniDB, Release 2.15.0

And now we can see that the second node has BDR active, his name in the BDR group is node2, and now the BDR
group has 2 nodes:

17.7 Creating a table in the first node

Let’s create a table in the first node. Expand the public schema, right click the Tables node and choose Create Table.
Give the new table a name and add some columns. When done, click in the button Save Changes:

17.7. Creating a table in the first node 149

OmniDB, Release 2.15.0

Now confirm that the table has been created in the first node by right clicking the Tables node and choosing Refresh.
Go to the second node, expand the schema public, then expand the Tables node. Note that the table has been
replicated from node1 to node2. If the table was created in the second node, it would have been created in the first
node as well, because in BDR all nodes are masters.

150 Chapter 17. 17. Postgres-BDR

OmniDB, Release 2.15.0

17.8 Adding some data in the second node

While you are at the second node, right click the table bdrtest, point to Data Actions and then click in Edit Data.
Add some rows to this table. When finished, click in the Save Changes button.

17.8. Adding some data in the second node 151

OmniDB, Release 2.15.0

Now go to the first node, right click the table, point to Data Actions and then click in Query Data. See how the rows
created in node2 were automatically replicated into node1.

152 Chapter 17. 17. Postgres-BDR

OmniDB, Release 2.15.0

17.9 Adding some data in the first node

Let’s repeat the same procedure above, but instead of inserting rows from the second node, let’s insert some rows
while connected to the first node. Note how they replicate into the second node in the same way.

17.9. Adding some data in the first node 153

OmniDB, Release 2.15.0

154 Chapter 17. 17. Postgres-BDR

OmniDB, Release 2.15.0

17.9. Adding some data in the first node 155

OmniDB, Release 2.15.0

156 Chapter 17. 17. Postgres-BDR

CHAPTER 18

18. Postgres-XL

Postgres-XL (or just XL, for short) is an open source project from 2ndQuadrant. It is a massively parallel database built
on top of PostgreSQL, and it is designed to be horizontally scalable and flexible enough to handle various workloads.

In this chapter, we will use a cluster with 4 virtual machines: 1 GTM, 1 coordinator and 2 data nodes.

| Machine | IP | Role | |—|—|—|—| | xlgtm | 10.33.1.114 | GTM | | xlcoord | 10.33.1.115 | coordinator | | xldata1 |
10.33.1.116 | data node | | xldata2 | 10.33.1.117 | data node |

On each machine, you need to clone Postgres-XL repository and compile it. You also need to set specific XL pa-
rameters on file postgresql.conf and make sure all machines are communicating to each other by adjusting file
pg_hba.conf. More information on how Postgres-XL works and how to install it on Postgres-XL documentation.
You can also refer to this blog post.

18.1 Creating a test environment

OmniDB repository provides a 4-node Vagrant test environment. If you want to use it, please do the following:

git clone --depth 1 https://github.com/OmniDB/OmniDB
cd OmniDB/OmniDB_app/tests/vagrant/xl-9.5/
vagrant up

It will take a while, but once finished, 4 virtual machines with IP addresses 10.33.1.114, 10.33.1.115, 10.
33.1.116 and 10.33.1.117 will be up and each of them will have Postgres-XL 9.5 up and listening to port
5432, with all settings needed. To create all nodes, please do:

vagrant ssh xlcoord -c '/vagrant/setup.sh 10.33.1.115 10.33.1.116 10.33.1.117'
vagrant ssh xldata1 -c '/vagrant/setup.sh 10.33.1.115 10.33.1.116 10.33.1.117'
vagrant ssh xldata2 -c '/vagrant/setup.sh 10.33.1.115 10.33.1.116 10.33.1.117'

Then connect to the coordinator and define a password for the postgres user:

157

https://www.2ndquadrant.com/en/resources/postgres-xl/
https://www.postgres-xl.org/documentation/index.html
https://blog.2ndquadrant.com/postgres-xl-omnidb/

OmniDB, Release 2.15.0

$ vagrant ssh xlcoord -c 'sudo su - postgres -c /usr/local/pgsql/bin/psql'
psql (PGXL 9.5r1.6, based on PG 9.5.12 (Postgres-XL 9.5r1.6))
Type "help" for help.

postgres=# ALTER USER postgres PASSWORD 'omnidb';
ALTER ROLE
postgres=#

Now the XL cluster will be ready for you to use.

18.2 Install OmniDB XL plugin

OmniDB core does not support XL by default. You will need to download and install XL plugin. If you are using
OmniDB server, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-xl_1.0.0.zip
unzip omnidb-xl_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-server/OmniDB_app/
sudo systemctl restart omnidb

And then refresh the OmniDB web page in the browser.

For OmniDB app, these are the steps:

wget https://omnidb.org/dist/plugins/omnidb-xl_1.0.0.zip
unzip omnidb-xl_1.0.0.zip
sudo cp -r plugins/ static/ /opt/omnidb-app/resources/app/omnidb-server/OmniDB_app/

And then restart OmniDB app.

If everything worked correctly, by clicking on the “plugins” icon in the top right corner, you will see the plugin
installed and enabled:

18.3 Connecting to the cluster

Let’s use OmniDB to connect to the coordinator node. First of all, fill out connection info in the connection grid:

158 Chapter 18. 18. Postgres-XL

OmniDB, Release 2.15.0

Then select the connection. You will see OmniDB workspace window. Expand the tree root node. Note that OmniDB
identifies it is connected to a Postgres-XL cluster and shows a specific node called Postgres-XL just inside the tree root
node. Expand this node to see all the nodes we have in our cluster:

18.3. Connecting to the cluster 159

OmniDB, Release 2.15.0

18.4 Creating a HASH table

From the root node, expand Schemas, then public, then right click on the Tables node. Click on Create Table. Name
your new table, add some columns to it and do not forget to add a primary key too:

When done, click on the Save Changes button. Now right click on the Tables node and click on Refresh. You will see
the new table created. Expand it to see that there is also a Postgres-XL node inside of it. Check its properties.

160 Chapter 18. 18. Postgres-XL

OmniDB, Release 2.15.0

By default, Postgres-XL always try to create a table distributed by HASH. It means that the data will be split into
the nodes regularly, through a hash function applied on the specified column. If present, it will use the primary key,
or a unique constraint otherwise. If there is no primary key nor unique constraint, Postgres-XL uses the first eligible
column. If not possible to distribute by HASH, then Postgres-XL will create the table distributed by ROUNDROBIN,
which means that the data will be split in a way that every new row will be added to a different data node.

Now let’s add some rows in our new table. Right click on the table, then go to Data Actions and then click on Edit

18.4. Creating a HASH table 161

OmniDB, Release 2.15.0

Data. Add some rows and then click on the Save Changes button:

Right click on the table again, Data Actions, Query Data. You will see that cluster-wide the table has all data inside.

162 Chapter 18. 18. Postgres-XL

OmniDB, Release 2.15.0

But how the data was distributed in the data nodes? In the Postgres-XL main node, right click on each node and click
on Execute Direct. Adjust the query that will be executed directly into the data node, as you can see below.

18.4. Creating a HASH table 163

OmniDB, Release 2.15.0

164 Chapter 18. 18. Postgres-XL

OmniDB, Release 2.15.0

18.5 Creating a REPLICATION table

While HASH distribution is great for write-only and write-mainly tables, REPLICATION distribution is great for
read-only and read-mainly tables. However, a table distributed by REPLICATION will store all data in all nodes it is
located.

In order to create a REPLICATION table, let us create a new table like we did before:

Note how by default it was created as a HASH table:

18.5. Creating a REPLICATION table 165

OmniDB, Release 2.15.0

Let us change the distribution type of the table by right-clicking on the Postgres-XL node inside the table, and then
clicking on Alter Distribution. Uncomment the “REPLICATION” line and execute the command:

166 Chapter 18. 18. Postgres-XL

OmniDB, Release 2.15.0

You can check the distribution was successfully changed by right-clicking on the Postgres-XL node and clicking on
Refresh. The properties will now show Distributed by: replication.

18.5. Creating a REPLICATION table 167

OmniDB, Release 2.15.0

Now add some data to the table:

168 Chapter 18. 18. Postgres-XL

OmniDB, Release 2.15.0

And then check that all data exist on all data nodes:

18.5. Creating a REPLICATION table 169

OmniDB, Release 2.15.0

170 Chapter 18. 18. Postgres-XL

OmniDB, Release 2.15.0

18.5. Creating a REPLICATION table 171

OmniDB, Release 2.15.0

172 Chapter 18. 18. Postgres-XL

CHAPTER 19

19. Deploying omnidb-server

Whenever deploying omnidb-server the user must be aware of how OmniDB works in terms of ports so the environ-
ment can be properly configured taking the infrastructure into account.

OmniDB uses 2 servers to answer user requests, one is the default webserver serving the application itself and the
other is a websocket server used by several parts of OmniDB, such as Query, Console and Debugging Tab, allowing
a bi-directional communication between the client and the server which enhances performance and user experience.
This means that 2 ports need to be properly configured:

• OmniDB server:

– Technology: CherryPy

– Default port: 8000

• Websocket server:

– Technology: Tornado

– Default port: 25482

Both servers support SSL so OmniDB can run by itself securely without the need of a load balancer or reverse proxy,
such as Nginx.

The configuration of ports and certificates can be done via command options or configuration file.

19.1 Command options

Usage: omnidb-server [options]

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-H HOST, --host=HOST listening address
-p PORT, --port=PORT listening port
-w WSPORT, --wsport=WSPORT

(continues on next page)

173

OmniDB, Release 2.15.0

(continued from previous page)

websocket port
-e EWSPORT, --ewsport=EWSPORT

external websocket port
-d HOMEDIR, --homedir=HOMEDIR

home directory containing local databases config and
log files

-c CONF, --configfile=CONF
configuration file

• -H specifies in what addresses the servers will listen, the default value is 0.0.0.0 meaning that all addresses
bound to the machine will be used (127.0.0.1, 192.168.0.100, 162.154.12.35, for example).

• -p specifies in what port OmniDB server will listen, this is the port used in the browser’s URL if OmniDB is
being accessed directly. The default value is

1.

• -w specifies in what port the websocket server will listen. If OmniDB is being accessed directly the websocket
client will connect to this port. The default value is 25482.

• -e specifies in what port the websocket client (the page opened in your browser) will connect. This option is
used when OmniDB is behind a load balancer and the tornado server isn’t being accessed directly, in this case
we must tell websocket client what port to use. If not specified the client will use the port specified in -w.

• -d This parameter let’s the user choose what folder will store the persistent files, such as omnidb.conf, om-
nidb.log, db.sqlite3 (sessions database) and omnidb.db (application database). With this option is possible to
have several instances of omnidb-server running, each one pointing to a specific directory. It also facilitates
the deployment with Docker as it enables to point OmniDB to a mounted volume.

• -c Points OmniDB to a specific configuration file, can be used along with -d to specify a storage folder but
choosing a specific config file.

19.2 Configuration File

The configuration file, omnidb.conf by default, can be used to set all the parameters specified in the previous
category and a few additional parameter related to SSL and some about the query server itself.

This file is created when OmniDB is started for the first time or when a new folder is specified with the option -d. If
no folder is specified the default location for files is:

• Linux: ~/.omnidb/omnidb-server/

• Windows: User Folder/.omnidb/omnidb-server/

Here is the default configuration file:

OmniDB Server configuration file

[webserver]

What address the webserver listens to, 0.0.0.0 listens to all addresses bound to
→˓the machine
listening_address = 127.0.0.1

Webserver port, if port is in use another random port will be selected
listening_port = 8000

(continues on next page)

174 Chapter 19. 19. Deploying omnidb-server

OmniDB, Release 2.15.0

(continued from previous page)

Websocket port, if port is in use another random port will be selected
websocket_port = 25482

External Websocket port, use this parameter if OmniDB isn't directly visible by the
→˓client
external_websocket_port = 25482

Security parameters
is_ssl = True requires ssl_certificate_file and ssl_key_file parameters
This is highly recommended to protect information
is_ssl = False
ssl_certificate_file = /path/to/cert_file
ssl_key_file = /path/to/key_file

Trusted origins, use this parameter if OmniDB is configured with SSL and is being
→˓accessed by another domain
csrf_trusted_origins = origin1,origin2,origin3

[queryserver]

#Max number of threads that can used by each advanced object search request
thread_pool_max_workers = 2

#Number of seconds between each prompt password request. Default: 30 minutes
pwd_timeout_total = 1800

• is_ssl: specifies whether to run securely or not.

• ssl_certificate_file: path to the certificate file.

• ssl_key_file: path to the key file.

• csrf_trusted_origins: list of trusted origins. When OmniDB is started with SSL and the browser is
accessing it through another domain this parameter must specifies the domain in order to properly establish
communication.

• thread_pool_max_workers: defines the max number of threads that can be used in advanced object
search requests. That feature uses such mechanism to perform searches in parallel. This requires a tunning. Too
much workers can be even worse than less of them.

• pwd_timeout_total: defines the timeout of typed password in the interface, that is, the time before the last
typed password being considered as expired. The value is set in seconds. Defaults to 30 minutes.

Let’s take a look on how to deploy omnidb-server in different scenarios:

19.3 Deploying OmniDB directly

In this case no load balancers or reverse proxies are used, OmniDB is accessed directly and is extremely recommended
to start it with SSL enabled if it will be visible to the outside world.

For this scenario the user needs to specify the following parameters:

• -H or listening_address: Specify the address visible to the clients, can be a domain.

• -p or listening_port: Specify a port that will be used in the browser url: https://mydomain.
com:PORT

• -w or websocket_port: Specify a port that will be used by javascript to connect to Tornado server directly.

19.3. Deploying OmniDB directly 175

OmniDB, Release 2.15.0

• is_ssl: True

• ssl_certificate_file: /path/to/file

• ssl_key_file: /path/to/file

• -e or external_websocket_port: external websocket port isn’t needed as -w will be used directly.

It is important to mention here that both ports need to visible to every client trying to access OmniDB.

19.4 Deploying OmniDB behind a reverse proxy

In this case OmniDB won’t be accessed directly but through a properly configured load balancer or reverse proxy.

For this scenario a possible approach is to run omnidb-server listening to the local address 127.0.0.1 and
without SSL, given that the balancer will handle the security part.

The following parameters are required:

• -H or listening_address: 127.0.0.1.

• -p or listening_port: Specify a port to which the load balancer will redirect all the OmniDB server
requests.

• -w or listening_port: Specify a port to which the load balancer will redirect all the Websocket server
requests.

• -e or external_websocket_port: Specify a port that will be used by JavaScript to connect to Tornado
server. Since OmniDB is behind a load balancer, a port being listened by the load balancer should be specified
here and the balancer will redirect all requests to the port specified with -w. It is possible to specify the same
port used to access OmniDB but then the load balancer needs to proxy requests to the specific server according
to the URL pattern.

Consider this example of OmniDB being hosted behind Nginx:

• Starting omnidb-server:

omnidb-server -H 127.0.0.1 -p 9000 -w 26500 -e 443

In this case OmniDB can only be accessed locally and the browser will try to connect to the websocket server with the
default https port (443).

• Nginx configuration file:

server {
listen 443 ssl;
listen [::]:443 ssl;
include snippets/ssl-domain.conf;
include snippets/ssl-params.conf;
server_name domain.org;
client_max_body_size 75M;

location /wss {
proxy_pass http://127.0.0.1:26500;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Ssl https;
proxy_set_header X-Forwarded-Proto https;
proxy_set_header X-Forwarded-Port 443;
proxy_set_header Host $host;

(continues on next page)

176 Chapter 19. 19. Deploying omnidb-server

OmniDB, Release 2.15.0

(continued from previous page)

proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

}

location / {
proxy_pass http://127.0.0.1:9000;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Ssl https;
proxy_set_header X-Forwarded-Proto https;
proxy_set_header X-Forwarded-Port 443;
proxy_set_header Host $host;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

}
}

As can be seen, Nginx is listening for requests to domain.org in port 443. Since we also specified the external
websocket port to 443, websocket requests will be dealt here too.

Websocket requests are always directed to the pattern /wss so we use a specific location configuration to redirect all
requests to the port specified with -w, 26500 in this case.

Other requests that are not to /wss should all be redirected to OmniDB server, 9000 in this case.

19.4. Deploying OmniDB behind a reverse proxy 177

OmniDB, Release 2.15.0

178 Chapter 19. 19. Deploying omnidb-server

CHAPTER 20

20. Console Tab

Introduced in OmniDB 2.6.0, the new OmniDB Console Tab provides an easy and confortable way to interact with
your databases. Users familiar with the psql command line utility will find that Console Tab behaves very similarly.
In fact, many of the backslash commands Console Tab provides are present in psql.

For example, \? shows a list with all commands available, its syntax and description. The command \h can be another
friend of yours, because it shows a comprehensive help about any PostgreSQL SQL command.

179

OmniDB, Release 2.15.0

The editor on the bottom of the tab area is full-featured just like the Query Tab editor (it provides syntax highlight and
autocomplete with Ctrl-Space). To execute a command, just type it in this editor. If the command is a backslash (starts
with \), just type Enter and it will be executed. If it is a regular SQL command, then it can be multi-lined, and you
will need to type Alt-Q to execute it.

All commands and its output will be logged into the display area, which is textual and read-only, so you can copy and
paste its contents somewhere else. You can clear the display area by clicking on the Clear Console button.

All commands also are logged in the connection query history, and also in a local console history, which you can by
clicking in the Command History button.

By clicking in the green check, you can borrow the command and put it into the editor, so you can amend it and
execute it. Another comfortable way to navigate through the history is using the shortcuts Ctrl-Up and Ctrl-Down, to
quickly paste in the editor the previous and next commands, respectively.

Backslash commands such as \dt, \d+, \x and \timing are very useful when dealing with databases every day.
The console tab will also show any errors and the results of any SQL command you type in a pretty way. Try it out!

180 Chapter 20. 20. Console Tab

OmniDB, Release 2.15.0

181

OmniDB, Release 2.15.0

182 Chapter 20. 20. Console Tab

CHAPTER 21

21. Plugin System

OmniDB 2.9 introduces the plugin system, a feature that allows users to develop and share their own features that can
be plugged into OmniDB without having to deploy the whole application again.

The plugin system is based on hooks that are located in different parts of the interface. Each plugin can subscribe to
any hook and have a collection of API functions to perform different tasks, such as creating inner/outer tabs, creating
tree nodes and calling python functions in the plugin’s python code.

183

OmniDB, Release 2.15.0

Here is an example of a plugin that adds the Test action into the inner tab + context menu:

For more details about the Plugin system, instructions on how to install and also to develop plugins, please refer to the
github page:

Plugin System

184 Chapter 21. 21. Plugin System

https://github.com/OmniDB/plugins

CHAPTER 22

22. Advanced Object Search

OmniDB 2.9 introduces the a Advanced Object Search feature, allowing users to use an advanced pattern matching to
search database objects and tables data. The feature allows to use the default SQL LIKE operator and also complex
regular expressions.

You can access the Advanced Object Search feature by right clicking in a specific database node in the tree:

185

OmniDB, Release 2.15.0

The interface allows you to filter categories of objects, schemas where searchs will be executed and also to limit the
search space when the Data category is selected, so you search for a pattern in a subset of tables:

After filling the fields and running OmniDB will perform the search using several threads that will speed up the process

186 Chapter 22. 22. Advanced Object Search

OmniDB, Release 2.15.0

by running in parallel (It is customizable. For more info, see chapter 19 - Deploying OmniDB).

When the search is finished OmniDB will display the result in a tree:

For more details about the search in each category, right click the desired node and select ‘See More’. OmniDB will
open a query tab with the SQL command used to perform that specific search. Just run the command to get the results:

187

OmniDB, Release 2.15.0

188 Chapter 22. 22. Advanced Object Search

CHAPTER 23

23. Debugger Plugin Installation

• 1- Linux Installation

• 2- Windows Installation

• 3- FreeBSD Installation

• 4- MacOSX Installation

• 5- Post-installation steps ** REQUIRED **

189

OmniDB, Release 2.15.0

190 Chapter 23. 23. Debugger Plugin Installation

CHAPTER 24

23.1. Linux Installation

You can install from Debian PGDG repository or from standalone packages or compile from source.

• 1.1. Installing from Debian PGDG repository (recommended)

• 1.2. Installing from DEB/RPM packages

• 1.3. Compiling the extension from source

24.1 23.1.1. Installing from Debian PGDG repository

On Debian and Ubuntu systems, this is the recommended way of installing the OmniDB debugger for PostgreSQL
PL/pgSQL functions and procedures.

24.1.1 23.1.1.1. Install Debian PGDG repository (if not already)

sudo echo "deb http://apt.postgresql.org/pub/repos/apt/ $(lsb_release -cs)-pgdg main"
→˓> /etc/apt/sources.list.d/pgdg.list
sudo wget --quiet -O - https://apt.postgresql.org/pub/repos/apt/ACCC4CF8.asc | apt-
→˓key add -

24.1.2 23.1.1.2. Install omnidb_plugin for your PostgreSQL version X.Y

sudo apt install postgresql-X.Y-omnidb

24.1.3 23.1.1.3. Set shared_preload_libraries

191

OmniDB, Release 2.15.0

nano /etc/postgresql/X.Y/main/postgresql.conf
shared_preload_libraries = 'omnidb_plugin'

sudo systemctl restart postgresql

24.1.4 23.1.1.3. Post-installation steps

23.1.1.3.1. Create omnidb_plugin extension (should be done by a superuser)

psql -d <database> -c 'CREATE EXTENSION omnidb_plugin'

23.1.1.3.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.1.1.3.3. Next steps

Follow Post-installation steps in section 5.

24.2 23.1.2. Installing from DEB/RPM packages

24.2.1 23.1.2.1. Install the package

For example, Debian-like 64 bits:
sudo dpkg -i omnidb-plugin_2.16.0-debian-amd64.deb

For example, for CentOS-like 64 bits:
sudo rpm -ivU omnidb-plugin_2.16.0-centos-amd64.rpm

24.2.2 23.1.2.2. Create a symlink

Find the PostgreSQL version and path for $libdir and create a link to the specific
→˓library. For example:
sudo ln -s /opt/omnidb-plugin/omnidb_plugin_96.so /usr/lib/postgresql/9.6/lib/omnidb_
→˓plugin.so

24.2.3 23.1.2.3. Set shared_preload_libraries

nano /etc/postgresql/X.Y/main/postgresql.conf
shared_preload_libraries = 'omnidb_plugin'

sudo systemctl restart postgresql

192 Chapter 24. 23.1. Linux Installation

OmniDB, Release 2.15.0

24.2.4 23.1.2.4. Post-installation steps

23.1.2.4.1. Create omnidb schema in your database (should be done by a superuser)

psql -d <database> -f debugger_schema.sql

23.1.2.4.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.1.2.4.3. Next steps

Follow Post-installation steps in section 5.

24.3 23.1.3. Compiling the extension from source

24.3.1 23.1.3.1. Install headers for PostgreSQL and libpq

sudo apt install postgresql-server-dev-X.Y libpq-dev

24.3.2 23.1.3.2. Compile omnidb_plugin

make

24.3.3 23.1.3.3. Install omnidb_plugin

sudo make install

24.3.4 23.1.3.4. Set shared_preload_libraries

nano /etc/postgresql/X.Y/main/postgresql.conf
shared_preload_libraries = 'omnidb_plugin'

sudo systemctl restart postgresql

24.3.5 23.1.3.5. Post-installation steps

23.1.3.5.1. Create omnidb_plugin extension (should be done by a superuser)

psql -d <database> -c 'CREATE EXTENSION omnidb_plugin'

24.3. 23.1.3. Compiling the extension from source 193

OmniDB, Release 2.15.0

23.1.3.5.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.1.3.5.3. Next steps

Follow Post-installation steps in section 5.

194 Chapter 24. 23.1. Linux Installation

CHAPTER 25

23.2. Windows Installation

25.1 23.2.1. Downloading the plugin

Download the zip corresponding to your architecture from the website.

25.2 23.2.2. Installing the plugin

Move the omnidb_plugin.dll corresponding to your PostgreSQL version to the folder lib, which is inside the folder
where PostgreSQL was installed.

25.3 23.2.3. Set shared_preload_libraries

Change the file PostgreSQL_directory/data/postgresql.conf, including the following line:

shared_preload_libraries = 'omnidb_plugin'

Then restart PostgreSQL.

25.4 23.2.4. Post-installation steps

25.4.1 23.2.4.1. Create omnidb schema in your database (should be done by a su-
peruser)

psql -d <database> -f debugger_schema.sql

195

OmniDB, Release 2.15.0

25.4.2 23.2.4.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

25.4.3 23.2.4.3. Next steps

Follow Post-installation steps in section 5.

196 Chapter 25. 23.2. Windows Installation

CHAPTER 26

23.3. FreeBSD Installation

26.1 23.3.1. Downloading the plugin

Download the tar.gz corresponding to your architecture from the website.

wget --no-check-certificate https://omnidb.org/dist/2.16.0/omnidb-plugin_2.16.0-
→˓freebsd.tar.gz

26.2 23.3.1. Installing the plugin

Move the omnidb_plugin.so corresponding to your PostgreSQL version to the folder lib, which is inside the folder
where PostgreSQL was installed.

tar -xzvf omnidb-plugin_2.16.0-freebsd.tar.gz
cp omnidb-plugin_2.16.0-freebsd/omnidb_plugin_10.so /usr/local/lib/postgresql/omnidb_
→˓plugin.so

26.3 23.3.3. Set shared_preload_libraries

Change the file PostgreSQL_directory/data/postgresql.conf, including the following line:

shared_preload_libraries = 'omnidb_plugin'

Then restart PostgreSQL.

197

OmniDB, Release 2.15.0

26.4 23.3.4. Post-installation steps

26.4.1 23.3.4.1. Create omnidb schema in your database (should be done by a su-
peruser)

psql -d <database> -f debugger_schema.sql

26.4.2 23.3.4.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

26.4.3 23.3.4.3. Next steps

Follow Post-installation steps in section 5.

198 Chapter 26. 23.3. FreeBSD Installation

CHAPTER 27

23.4. MacOSX Installation

27.1 23.4.1. Limitations

If you have PostgreSQL installed in your Mac and want to also install OmniDB debugger, please be aware that
currently we don’t offer any packages for the debugger for Mac OS X. Your only option is to compile and install from
sources. It is not that hard, as you can see below.

27.2 23.4.2. Compiling the extension from source

27.2.1 23.4.2.1. Install SDK headers for Mac OS

sudo installer -pkg /Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_
→˓for_macOS_10.14.pkg -target /

27.2.2 23.4.2.2. If not installed, install PostgreSQL from Homebrew

This will also install PostgreSQL headers and libpq.

If brew is not installed yet, you can install it like this:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)"

Then:

brew install postgresql

199

OmniDB, Release 2.15.0

27.2.3 23.4.2.3. Compile omnidb_plugin

make

27.2.4 23.4.2.4. Install omnidb_plugin

sudo make install

27.2.5 23.4.2.5. Set shared_preload_libraries

vim /usr/local/var/postgres/postgresql.conf
shared_preload_libraries = 'omnidb_plugin'

brew services restart postgresql

27.2.6 23.4.2.6. Post-installation steps

23.4.2.6.1. Create omnidb_plugin extension (should be done by a superuser)

psql -d <database> -c 'CREATE EXTENSION omnidb_plugin'

23.4.2.6.2. Create sample functions (optional)

psql -d <database> -f sample_functions.sql

23.4.2.6.3. Next steps

Follow Post-installation steps in section 5.

200 Chapter 27. 23.4. MacOSX Installation

CHAPTER 28

23.5. Post-installation steps ** REQUIRED **

28.1 23.5.1. Grant privileges to each database user that will debug
functions (should be done by a superuser)

Every database user that uses the debugger needs access to the debugger control tables.

psql -d <database> -c 'GRANT ALL ON SCHEMA omnidb TO <user>; GRANT ALL ON ALL TABLES
→˓IN SCHEMA omnidb TO <user>;'

28.2 23.5.2. Enable passwordless access to each database user that
will debug functions

Every database user that uses the debugger needs local passwordless access to the target database. This is because the
database will create an additional local connection to perform debugging operations.

We need to add a rule to pg_hba.conf of type host, matching the PostgreSQL user and database OmniDB is connected
to. The method can be either trust, which is insecure and not recommended, or md5.

28.2.1 trust

• Add a rule similar to:

TYPE DATABASE USER ADDRESS METHOD
host <database> <user> 127.0.0.1/32 trust
host <database> <user> ::1/128 trust

201

OmniDB, Release 2.15.0

28.2.2 md5

• Add rules similar to:

TYPE DATABASE USER ADDRESS METHOD
host <database> <user> 127.0.0.1/32 md5
host <database> <user> ::1/128 md5

• Create a .pgpass file with a similar content:

localhost:<port>:<database>:<username>:<password>

More information about how .pgpass works can be found here: https://www.postgresql.org/docs/11/static/libpq-
pgpass.html

202 Chapter 28. 23.5. Post-installation steps ** REQUIRED **

CHAPTER 29

Indices and tables

• genindex

• modindex

• search

203

	1. Introduction
	2. Installation
	3. Creating Users and Connections
	4. Managing Databases
	5. Creating, Changing and Removing Tables
	6. Managing Table Data
	7. Writing SQL Queries
	8. Visualizing Query Plans
	9. Visualizing Data
	10. Managing other Elements
	11. Additional Features
	12. OmniDB Config Tool
	13. Writing and Debugging PL/pgSQL Functions
	14. Monitoring Dashboard
	15. Logical Replication
	16. pglogical
	17. Postgres-BDR
	18. Postgres-XL
	19. Deploying omnidb-server
	20. Console Tab
	21. Plugin System
	22. Advanced Object Search
	23. Debugger Plugin Installation
	23.1. Linux Installation
	23.2. Windows Installation
	23.3. FreeBSD Installation
	23.4. MacOSX Installation
	23.5. Post-installation steps ** REQUIRED **
	Indices and tables

